-
大量工农业废水和生活污水的排放会致使自然水体氮素污染加剧,引发水体富营养化、城市黑臭水体等重大环境问题[1]。生物脱氮技术因为具有环境友好、适用范围广、废水达标排放可靠性强的优点,已成为当前水中含氮污染物处理应用最广泛的方法[2]。传统生物脱氮过程中(A2O工艺),氨氮首先在好氧硝化微生物作用下被氧化为亚硝氮与硝态氮;在缺氧段,反硝化微生物通过代谢有机碳源最终实现亚硝氮与硝氮向氮气的转化。反硝化过程需充足的有机物作为电子供体以满足氮氧化物的还原要求,为获得较好的脱氮效果,废水C/N比需达到3~5[3]。我国实施的“控源减排”政策有效控制了水中有机污染,这也使废水中C/N比大幅降低,造成反硝化微生物电子供体缺乏问题,因此,需要外加大量碳源(甲醇、乙酸等)以维持反硝化作用。然而,外加碳源不仅极大地增加了运行成本,也容易造成二次污染。
近年来,以无机电子供体如氢、硫、铁为底物的自养反硝化技术收到越来越多的关注。该技术的优势在于避免出水有机碳残留、降低污泥产量,因此,被视为异养反硝化的有效替代方案[4-5]。其中,氢自养反硝化产物清洁、产能高,但由于氢气在水中传质效率低,与空气形成的混合物易燃易爆,因此,难以大规模推广使用[6]。以硫化氢、硫单质、硫代硫酸根等低价硫作为电子供体的硫自养反硝化技术有效避免了氢自养反硝化技术安全性问题,可实现高效反硝化过程[7-8],然而,其仍存在硫酸根过量排放,对生态系统及人类健康造成潜在风险。与氢和硫自养反硝化相比,铁自养反硝化技术具有原料安全易得、价格低廉,且可协同去除磷、砷等污染物的特点,具有广阔的应用前景[9-12]。1996年,STRAUB等[13]首次分离得到厌氧铁氧化反硝化(anaerobic iron-oxidizing denitrification)细菌,其能够在无有机碳源条件下氧化Fe(Ⅱ)并将释放的电子用于硝酸盐还原为氮气(式(1))。1998年,NIELSEN等[14]报道了活性污泥体系中存在铁氧化反硝化过程,预示了以活性污泥作为接种物实现铁自养反硝化的可行性。近年来,以活性污泥接种的铁自养反硝化反应器脱氮速率可达0.07~0.33 kg·(m3·d)−1[1, 4-5],并且,通过定期补充异养反硝化污泥或含铁污泥[15-16],反应器能够实现长期稳定的脱氮效果。虽然铁自养反硝化工艺的性能已被广泛研究,但是由于缺乏对铁自养反硝化过程内在机理的了解,使得该过程中产生的如细胞结壳、释放温室气体N2O、亚硝氮积累等问题,仍难以得到解释和解决。因此,探究铁自养反硝化的机理过程,有利于完善和发展该类型的脱氮工艺,进一步解决水环境中氮素污染问题。
在很长一段时期内,铁氧化反硝化过程被视作完全生物过程[4, 17]。然而,硝氮还原过程所产生的活性中间产物(如亚硝氮等)能通过化学作用直接氧化Fe(Ⅱ)(式(2))。例如,异养硝酸盐还原菌Klebsiella mobilis虽然没有氧化Fe(Ⅱ)的能力,但在还原硝酸盐时,中间产物能够导致Fe(Ⅱ)的化学氧化[18]。因此,铁氧化反硝化过程中,Fe(Ⅱ)的化学氧化和生物氧化作用可能同步发生,各物质的动态变化也使得两种作用紧密联系,难以区分。目前,通过氮同位素分馏[19]、次生矿物表征[19]、铁氮消耗比例[4]和中间产物鉴定[17]等方式,铁氧化反硝化过程中生物和化学作用的共存已被间接证实。由于生物和化学作用的铁壳生成位点[19]、氮还原产物[17]等存在差异,从而对铁氧化反硝化体系的稳定性产生巨大影响,因此,揭示该过程中生物和化学作用的变化规律有利于构建更稳固的铁氧化反硝化体系。然而,目前对于铁自养反硝化过程究竟是化学作用还是生物作用起主导仍存在争议。近年来,大量研究均以纯菌为研究对象对铁自养反硝化过程的生物和化学作用进行机理探究,利用动力学模型,区分了纯培养体系中生物和化学作用的相互关系[20-21]。然而,对纯菌体系的研究并不能反映实际情况中铁自养反硝化过程的表现。对于活性污泥体系,由于其条件更为复杂,且Fe(Ⅱ)对不同铁自养微生物反硝化过程的影响存在差异,故采用动力学模型探究活性污泥铁自养反硝化体系的生物化学作用有利于深入了解其反硝化过程中的内在机理和Fe(Ⅱ)所发挥的作用,衡量铁自养反硝化活性污泥的驯化进程。此外,由于混合培养体系中自养与异养微生物共存,可能存在异养微生物利用微生物代谢产物[22],如胞外聚合物(extracellular polymeric substances, EPS),进行异养反硝化[15, 23]。EPS是由微生物产生的一种高分子聚合物,在饥饿环境中能够分解为小分子可溶性微生物产物(soluble microbial products, SMP)[24],从而为微生物提供碳源和能量。因此,将基质浓度变化与动力学模型相结合,有助于研究和区分铁氧化反硝化过程中的生化过程,了解其内在机理。
本研究以铁自养反硝化污泥为研究对象,分析污泥驯化培养过程中脱氮性能及各项指标的变化;利用批次实验,结合反应动力学模型,定量对比接种污泥与驯化污泥在铁氧化反硝化过程中Fe(Ⅱ)氧化和
$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N还原的生物和化学作用相对贡献,解析该过程涉及的亚铁氧化机制,为铁自养反硝化和混合营养反硝化技术的发展提供参考。
铁自养反硝化污泥富集培养过程中化学与生物作用的变化规律
Deciphering the evolution of biological and chemical process in acclimatization of autotrophic iron-dependent denitrifying sludge
-
摘要: 铁自养反硝化技术在低碳氮比废水处理中具有安全性高、成本低廉等优势,但目前对其反硝化过程机理,特别是其中生物与化学作用的关系仍缺乏清晰认识。为此,以铁自养反硝化系统为研究对象,结合反应动力学,分析不同阶段活性污泥自养反硝化过程中生物和化学作用变化规律,以期探究该过程的脱氮机制。结果表明,铁自养反硝化过程脱氮效率和速率分别可达(87.0±1.8)%和0.12 kg·(m3·d)−1。铁自养条件下,未经驯化的活性污泥在反硝化过程中,Fe(Ⅱ)氧化由化学作用主导,
$ {{\rm{NO}}_{\rm{2}}^{\rm{ - }}}$ -N还原由生物作用主导,且生物过程由自养反硝化和以胞外聚合物为底物的异养反硝化共同作用;经驯化培养,Fe(II)氧化的生物作用增强,与${ {\rm{NO}}_{\rm{2}}^{\rm{ - }}}$ -N还原均由生物作用主导。以上研究结果可为铁自养反硝化脱氮技术的发展提供参考。Abstract: Iron-dependent autotrophic denitrification technology has advantages of high safety and low cost in treating wastewater with a low C/N ratio. However, till date, the denitrification mechanism of this technology, especially the relationship between biological and chemical process remains unclear. To unravel such a relationship and explore its denitrification mechanism, this work adopted reaction kinetics to investigate the evolution of biological and chemical reactions in the acclimation of an autotrophic iron-dependent denitrifying sludge at different stages. The results showed that the denitrification efficiency and rate of the autotrophic iron-dependent denitrifying sludge could reach (87.0±1.8)% and 0.12 kg·(m3·d)−1, respectively. Under the iron-dependent autotrophic condition, the Fe(Ⅱ) oxidation was dominated by chemical reaction during the denitrification of the seeding activated sludge, while the$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N reduction was dominated by biological reaction, and the biological process was co-acted by autotrophic denitrification and heterotrophic denitrification with extracellular polymer substances as substrates. For the acclimated sludge, the biological Fe(II) oxidation was enhanced, and the$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N reduction was dominated by biological reaction. This work can provide a theoretical basis for the development of iron-dependent autotrophic denitrification technology. -
表 1 各阶段进水基质质量浓度
Table 1. Mass concentration of influent substances at each stage
运行阶段 -N质量$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$
浓度/(mg·L−1)Fe(Ⅱ)质量
浓度/(mg·L−1)Ⅰ(0~7 d) 50 0 Ⅱ(8~30 d) 50 280 Ⅲ(31~79 d) 50 560 Ⅳ(80~110 d) 50 840 表 2 活性污泥铁氧化反硝化过程基质降解动力学常数
Table 2. Kinetic constants of substrate degradation during iron-oxidizing denitrification process in activated sludge
污泥类型 基质种类 污泥+ /h−1$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ 污泥+ +Fe(II)/h−1$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ 污泥+ /h−1$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ 污泥+ +Fe(II)/h−1$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ 接种污泥 -N/$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ -N$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ 5.47×10−3 6.45×10−3 15.11×10−3 9.56×10−3 Fe — 4.94×10−3 — 7.22×10−3 Fe/N — 1.3 — 1.6 驯化污泥 -N$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ 0 3.11×10−3 0 3.25×10−3 Fe — 2.05×10−3 — 7.33×10−3 Fe/N — 4.5 — 2.6 表 3 不同初始Fe(II)/
-N比下化学反应结果$ {\bf{NO}}_{\rm{2}}^{\rm{ - }}$ Table 3. Chemical reaction results at different initial Fe(II)/
-N ratios$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ Fe(II)/N初始比 Fe(II)/N消耗比 NO/N2O生成比 1∶1 1.1 13 2∶1 1.6 1.2 4∶1 2.1 0 -
[1] ZHANG M, ZHENG P, LI W, et al. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: A novel prospective technology for autotrophic denitrification[J]. Bioresource Technology, 2015, 179: 543-548. doi: 10.1016/j.biortech.2014.12.036 [2] LU H J, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64: 237-254. doi: 10.1016/j.watres.2014.06.042 [3] CHIU Y C, CHUNG M S. Determination of optimal COD/nitrate ratio for biological denitrification[J]. International Biodeterioration and Biodegradation, 2003, 51(1): 43-49. doi: 10.1016/S0964-8305(02)00074-4 [4] TIAN T, ZHOU K, XUAN L, et al. Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge[J]. Water Research, 2020, 170: 115300. doi: 10.1016/j.watres.2019.115300 [5] TIAN T, YU H Q. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters[J]. Bioresource Technology, 2020, 299: 122686. doi: 10.1016/j.biortech.2019.122686 [6] EPSZTEIN R, BELIAVSKI M, TARRE S, et al. High-rate hydrogenotrophic denitrification in a pressurized reactor[J]. Chemical Engineering Journal, 2016, 286: 578-584. doi: 10.1016/j.cej.2015.11.004 [7] SUN Y M, NEMATI S, NEMATI M. Evaluation of sulfur-based autotrophic denitrification and denitrification for biological removal of nitrate and nitrite from contaminated waters[J]. Bioresource Technology, 2012, 114: 207-216. doi: 10.1016/j.biortech.2012.03.061 [8] SAHINKAYA E, YURTSEVER A, UCAR D. A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr(VI) and nitrate reduction[J]. Journal of Hazardous Materials, 2017, 286: 15-21. [9] TIAN T, ZHOU K, LI Y S, et al. Phosphorus recovery from wastewater prominently through a Fe(II)-P oxidizing pathway in the autotrophic iron-dependent denitrification process[J]. Environmental Science and Technology, 2020, 54(18): 11576-11583. doi: 10.1021/acs.est.0c02882 [10] SENN D B, HEMOND H F. Nitrate controls on iron and arsenic in an urban lake[J]. Science, 2002, 296: 2373-2376. doi: 10.1126/science.1072402 [11] LACK J G, CHAUDURI S K, KELLY S D, et al. Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II)[J]. Applied and Environmental Microbiology, 2002, 68(6): 2704-2710. doi: 10.1128/AEM.68.6.2704-2710.2002 [12] LI T, WANG H J, DONG W Y, et al. Performance of an anoxic reactor proposed before BAF: Effect of ferrous sulfate on enhancing denitrification during simultaneous phosphorous removal[J]. Chemical Engineering Journal, 2014, 248: 41-48. doi: 10.1016/j.cej.2014.03.033 [13] STRAUB K L, BENZ M, SCHINK B, et al. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron[J]. Applied and Environmental Microbiology, 1996, 62: 1458-1460. doi: 10.1128/aem.62.4.1458-1460.1996 [14] NIELSEN J L, NIELSEN P H. Microbial nitrate-dependent oxidation of ferrous iron in activated sludge[J]. Environmental Science and Technology, 1998, 32: 3556-3561. doi: 10.1021/es9803299 [15] WANG R, YANG C, ZHANG M, et al. Chemoautotrophic denitrification based on ferrous iron oxidation: Reactor performance and sludge characteristics[J]. Chemical Engineering Journal, 2017, 313: 693-701. doi: 10.1016/j.cej.2016.12.052 [16] WEI Y Y, DAI J, MACKEY H R, et al. The feasibility study of autotrophic denitrification with iron sludge produced for sulfide control[J]. Water Research, 2017, 122: 226-233. doi: 10.1016/j.watres.2017.05.073 [17] KLUEGLEIN N, ZEITVOGEL F, STIERHOF Y D, et al. Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria[J]. Applied and Environmental Microbiology, 2014, 80(3): 1051-1061. doi: 10.1128/AEM.03277-13 [18] ETIQUE M, JORAND F P A, ZEGEYE A, et al. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis)[J]. Environmental and Science Technology, 2014, 48(7): 3742-3751. doi: 10.1021/es403358v [19] CHEN D D, LIU T X, LI X M, et al. Biological and chemical processes of microbially mediated nitrate-reducing Fe(II) oxidation by Pseudogulbenkiania sp. strain 2002[J]. Chemical Geology, 2018, 476: 59-69. doi: 10.1016/j.chemgeo.2017.11.004 [20] LIU T X, CHEN D D, Luo X B, et al. Microbially mediated nitrate-reducing Fe(II) oxidation: Quantification of chemodenitrification and biological reactions[J]. Geochimica et Cosmochimica Acta, 2019, 256: 97-115. doi: 10.1016/j.gca.2018.06.040 [21] JAMIESON J, PROMMER H, KAKSONEN A H, et al. Identifying and quantifying the intermediate processes during nitrate-dependent iron(II) oxidation[J]. Environmental and Science Technology, 2018, 52(10): 5771-5781. doi: 10.1021/acs.est.8b01122 [22] NI B J, ZENG R J, FANG F, et al. Evaluation on factors influencing the heterotrophic growth on the soluble microbial products of autotrophs[J]. Biotechnology and Bioengineering, 2011, 108(4): 804-812. doi: 10.1002/bit.23012 [23] XIE W M, NI B J, SEVIOYR T, et al. Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge[J]. Water Research, 2012, 46(19): 6210-6217. doi: 10.1016/j.watres.2012.02.046 [24] XU J, SHENG G P, Ma Y, et al. Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system[J]. Water Research, 2013, 47(14): 5298-5306. doi: 10.1016/j.watres.2013.06.009 [25] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [26] YANG J X, ZHANG X N, SUN Y L, et al. Formation of soluble microbial products and their contribution as electron donors for denitrification[J]. Chemical Engineering Journal, 2017, 326: 1159-1165. doi: 10.1016/j.cej.2017.06.063 [27] PICARDAL F. Abiotic and microbial interactions during anaerobic transformations of Fe(II) and $ {\rm{NO}}_x^ - $ [J]. Frontiers in Microbiology, 2012, 3: 112.[28] BENZ M, BRUNE A, SCHINK B. Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria[J]. Archives of Microbiology, 1998, 169: 159-165. doi: 10.1007/s002030050555 [29] LIU T X, LI W, ZHANG M, et al. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17[J]. Journal of Colloid and Interface Science, 2014, 423: 25-32. doi: 10.1016/j.jcis.2014.02.026 [30] BLOETHE M, RODEN E E. Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture[J]. Applied and Environmental Microbiology, 2009, 75: 6937-6940. doi: 10.1128/AEM.01742-09 [31] LAUFER K, ROY H, JORGENSEN B B, et al. Evidence for the existence of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria in marine coastal sediment[J]. Applied and Environmental Microbiology, 2016, 82: 6120-6131. doi: 10.1128/AEM.01570-16 [32] HE S, TOMINSKI C, KAPPLER A, et al. Metagenomic analyses of the autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture KS[J]. Applied and Environmental Microbiology, 2016, 82: 2656-2668. doi: 10.1128/AEM.03493-15 [33] KOPF S H, HENNY C, NEWMAN D K. Ligand-enhanced abiotic iron oxidation and the effects of chemical versus biological iron cycling in anoxic environments[J]. Environmental and Science Technology, 2013, 47: 2602-2611. doi: 10.1021/es3049459