-
随着我国经济水平的提高,城镇污水处理无论在数量还是质量上都得到了迅速发展。截至2017年12月,我国已运行污水处理厂5 006座,处理能力近1.85×108 m3 ·d−1,预计2016—2020年城镇生活污水排放量仍将保持6%的快速增长趋势[1-2]。随着人们对环境质量要求的逐渐提高,政府对城镇污水处理厂排放标准的要求也进一步提高。虽然目前部分地区出台了更加严格的地方标准,但是目前《城镇污水处理厂污染物排放标准》 (GB 18918-2002)一级A排放标准(以下简称一级A标准)(或一级B)仍是我国大部分城镇污水处理厂执行的主要标准。由于进水水质或污水处理厂运行调控水平等原因,城镇污水处理厂出水的稳定达到标准(一级A标准)仍存在较大难度。
在城镇污水处理厂运行过程中,总氮(TN)和总磷(TP)是影响稳定达标的重要指标。氮的去除完全依靠生物代谢过程,脱氮效果受环境因素影响较多,故脱氮效果较难控制。与此相比,磷的去除可以借助化学除磷药剂,去除难度较小。因此,总氮是制约城镇污水处理厂出水稳定达标的关键指标。
本研究针对出水执行一级A排放标准的城镇污水处理厂,构建了总氮超标逻辑分析方法,借助污水处理厂全流程分析手段,应用于某城镇污水处理厂,实现了出水水质的达标排放。
城镇污水处理厂总氮超标逻辑分析方法及应用
Logic analysis method and application of total nitrogen exceeding the standard in urban sewage treatment plant
-
摘要: 基于脱氮原理及实际工程经验,建立了总氮(TN)超标逻辑分析方法,用于解决城镇污水处理厂出水TN无法稳定达到一级A标准的问题。该逻辑分析方法结合全流程检测和硝化潜力检测手段,可快速确定出水TN超标原因,并加快制定解决方案的进度。在水厂实际应用案例中,通过全流程检测发现,该厂出水TN超标的原因是缺氧池脱氮效率较低,从而导致出水硝态氮(
${\rm{NO}}_3^ - $ -N)较高。在结合TN超标逻辑分析方法后,该污水处理厂采取了关闭曝气沉砂池曝气系统、在厌氧池投加乙酸钠等调控措施,最终出水TN实现稳定达标排放。综上所述,总氮超标逻辑分析方法可有效解决实际生产过程中的出水TN超标问题,为城镇污水处理厂出水总氮达标排放提供参考。Abstract: Based on the denitrification principle and practical engineering experience, a logic analysis method of total nitrogen(TN) exceeding standard was established to deal with the problem that TN in the effluent of urban sewage treatment plant could not stably reach the first-class A level of national standard. The method combined the whole process monitoring and nitrification potential detection measures, could rapidly identify the reason for TN exceeding standard in the effluent, and accelerated the progress of developing solutions. In the case of practical application in urban sewage treatment plant, the whole process detection indicated that the reason for TN exceeding standard in the effluent was low denitrification efficiency in the anoxic tank, which results in high${\rm{NO}}_3^ - $ -N content in the effluent. After the combination with logic analysis method of TN exceeding standard, this urban sewage treatment plant adopted the regulating measurements of shutting down the aeration system in the aerated grit chamber and adding carbon source of sodium acetate in the anaerobic tank, and finally TN in the effluent reached the discharge standard. In summary, the logic analysis method of total nitrogen exceeding the standard can effectively solve the problem of TN exceeding, and provide a reference for the discharge of total nitrogen in the effluent of urban sewage treatment plants.-
Key words:
- total nitrogen /
- exceeding standard /
- logic analysis method /
- whole process detection
-
表 1 现阶段城镇污水处理厂污染物排放标准
Table 1. Discharge standard of pollutants from sewage treatment plant at present stage
标准 COD/(mg·L−1) BOD5/(mg·L−1) SS/(mg·L−1) TN/(mg·L−1) ${{\rm{NH}}_4^ +}$ -N/(mg·L−1)TP/(mg·L−1) pH 一级A出水标准 50 15 10 15 5(8)1) 0.5(1)2) 6~9 贾鲁河排放标准 40 10 10 15 3 0.5 — 注:1)括号内数值为水温≤12 ℃时的控制指标;2)括号内数据适用于2005年12月31日前建立的污水处理厂。 表 2 不同反应阶段活性污泥反硝化潜力
Table 2. Denitrification potential of activated sludge at different reaction stages
阶段 硝态氮消耗
速率/(mg· h−1)MLVSS/
(mg·L−1)反硝化潜力/
(mg·(g·h)−1)1 18.96 2 115 8.96 2 1.80 2 115 0.85 -
[1] 沈日康. 中国污水处理设施发展现状分析[J]. 环境与发展, 2017, 29(5): 4-5. [2] 易建婷, 张成, 徐凤, 等. 全国投运城镇污水处理设施现状与发展趋势分析[J]. 环境化学, 2015, 34(9): 1654-1660. doi: 10.7524/j.issn.0254-6108.2015.09.2015020901 [3] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [4] O SHAUGHNESSY M, HARVEY G B, SIZEMORE J, et al. Influence of plant parameters on effluent organic nitrogen[J]. Proceedings of the Water Environment Federation, 2006, 9: 3417-3423. [5] 翟天恩. 典型来源溶解性有机氮的生物有效性研究[D]. 北京: 中国环境科学研究院, 2017. [6] 付永胜. 屠宰加工废水生物脱氮工艺过程及动力学研究[D]. 成都: 西南交通大学, 2005. [7] ZHOU X, LIU X, HUANG S, et al. Total inorganic nitrogen removal during the partial complete nitrification for treating domestic wastewater: Removal pathways and main influencing factors[J]. Bioresource Technology, 2018, 256: 285-294. doi: 10.1016/j.biortech.2018.01.131 [8] YU S L, SHU T Q, WANG X Y, et al. Screening of efficient denitrobacteria induced by ultraviolet irradiation and lithium chloride[J]. Marine Sciences, 2011, 35(11): 35-40. [9] BAUMANN B, SNOZZI M, ZEHNDER A J, et al. Dynamics of denitrification activity of paracoccus denitrificans in continuous culture during aerobic-anaerobic changes[J]. Journal of Bacteriology, 1996, 178(15): 4367-4374. doi: 10.1128/JB.178.15.4367-4374.1996 [10] 姜体胜, 杨琦, 尚海涛, 等. 温度和pH值对活性污泥法脱氮除磷的影响[J]. 环境工程学报, 2007, 1(9): 10-14. doi: 10.3969/j.issn.1673-9108.2007.09.003 [11] KUAI L, VERSTRAETE W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system[J]. Applied and Environmental Microbiology, 1998, 64(11): 4500-4506. doi: 10.1128/AEM.64.11.4500-4506.1998 [12] HE Q, ZHANG W, ZHANG S, et al. Performance and microbial population dynamics during stable operation and reactivation after extended idle conditions in an aerobic granular sequencing batch reactor[J]. Bioresource Technology, 2017, 238(6): 116-121. [13] MOGENS H. 污水生物处理: 原理、设计与模拟[M]. 北京: 中国建筑工业出版社, 2011. [14] PENG Y Z, ZHU G B. Biological nitrogen removal with nitrification and denitrification via nitrite pathway[J]. Applied Microbiology and Biotechnology, 2006, 73(1): 15-26. doi: 10.1007/s00253-006-0534-z [15] PRINČIČ A, MAHNE I, MEGUŠAR F, et al. Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater[J]. Applied and Environmental Microbiology, 1998, 64(10): 3584-3590. doi: 10.1128/AEM.64.10.3584-3590.1998 [16] 上海市建设委员会. 室外排水设计规范[M]. 北京: 中国计划出版社, 2006. [17] 李朝阳, 李辰. 污水处理厂活性污泥中毒的原因探讨与控制[J]. 中国给水排水, 2013, 29(18): 146-148. [18] 娄金生. 生物脱氮除磷原理与应用[M]. 北京: 国防科技大学出版社, 2002. [19] 李鹏峰, 孙永利, 郑兴灿, 等. 太湖流域某污水厂工艺过程诊断及优化措施[J]. 中国给水排水, 2014, 30(17): 109-112. [20] PAUL E, PLISSON-SAUNE S, MAURET M, et al. Process state evaluation of alternating oxic-anoxic activated sludge using ORP, pH and DO[J]. Water Science and Technology, 1998, 38(3): 299-301. doi: 10.2166/wst.1998.0224 [21] SABY S, DJAFER M, CHEN G H. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process[J]. Water Research, 2003, 37(1): 11-20. doi: 10.1016/S0043-1354(02)00253-1