-
污水中含有大量的细菌等对人体有害的物质。经过城市污水处理厂二级生化处理后虽然可以大大降低水中细菌的浓度,但出水中仍然含有数量可观的细菌,会造成潜在的危险,消毒是保证出水安全性的重要措施。紫外线消毒由于其具有消毒效率高,灭菌广谱,有害消毒副产物量少以及操作简单等优势[1-3],在污水、再生水、饮用水处理过程中已得到广泛的应用。但紫外线不具有持久的消毒能力,消毒出水中微生物存在光复活现象,即微生物在可见光照射下,通过自身损伤修复机制修复紫外线造成的DNA损伤,重新获得活性,从而使水质无法达到使用和回用标准,产生安全健康风险[4-6]。因此,提高出水中紫外光消毒效果,抑制出水中微生物的光复活对于保证出水水质安全具有重要的意义。
过硫酸盐(PS)在降解顽固污染物[7]以及处理生物危害[8]等方面具有优异表现,在工业、消毒和分析等领域有着广泛的应用[9]。过硫酸盐可通过多种活化方式产生硫酸根自由基(
${\rm{SO}}_4^{\cdot -} $ ),$ {\rm{SO}}_4^{\cdot -}$ 具有极高的氧化还原电位,能够降解多种难去除有机污染物[10]。蒋梦迪等[11]利用热活化过硫酸盐降解三氯生,探讨了热活化的有效性;高金龙等[12]研究表明,二价铁活化过硫酸盐能有效降解土壤中十溴联苯醚;孙昕等[13]采用真空紫外/过二硫酸盐去除饮用水中嗅味物质,解决了饮用水的嗅味问题。UV-PS工艺一直以来大多用于有机物处理,但其作用原理证明其适合用于微生物灭活。本研究以粪便污染指示菌大肠杆菌为研究对象,采用紫外联合过硫酸盐进行水中大肠杆菌灭活,考察各反应条件对大肠杆菌杀灭的影响,并对单独UV消毒和UV-PS 2种不同方法消毒后水中大肠杆菌光复活性能进行研究,分析UV-PS联合消毒对水中大肠杆菌光复活能力的影响。
紫外联合过硫酸盐杀灭水中大肠杆菌
Inactivation effect of Escherichia coli by ultraviolet combined with persulfate
-
摘要: 为提高UV杀菌效率并同时解决UV杀菌存在光复活现象的问题,以大肠杆菌为研究对象,采用UV-PS (紫外联合过硫酸盐) 体系杀灭水中大肠杆菌,研究了各因素对UV-PS体系杀菌效果的影响,并考察复活光强度(0~42 µW·cm−2)对不同体系处理后大肠杆菌复活的影响,最后分析其杀菌机理。结果表明:UV-PS体系杀菌效率高于单独UV及单独PS杀菌,15 mJ·cm−2紫外剂量下,0.3 mmol·L−1 PS的加入较单独UV杀菌时大肠杆菌对数去除率增加1.0个对数级;且一定范围内大肠杆菌对数去除率随着PS初始浓度的增加而增加;中性条件更有利于大肠杆菌杀灭;Fe2+对大肠杆菌杀灭产生抑制效果;大肠杆菌经UV-PS体系处理后光复活能力明显下降,且仅在较强的复活光照下才会产生一定的光复活;UV-PS体系较单独UV杀菌时大肠杆菌细胞形态破坏更为严重,UV-PS体系产生的硫酸根自由基首先攻击细胞表面,使得细胞结构破损,细胞膜破裂,进而对其内容物进行氧化损伤,导致细胞死亡。UV-PS体系杀菌效率高且对大肠杆菌的光复活现象抑制明显,具有一定的应用前景。Abstract: In order to improve UV sterilization efficiency and solve the problem of photoreactivation in UV sterilization, ultraviolet (UV) and persulfate (PS) were combined for Escherichia coli (E.coli) inactivation. The effects of different factors on the inactivation were investigated, as well as the effects of different photoreactivating light intensities (0~42 μW·cm−2) on E.coli photoreactivation. The sterilizing mechanism was briefly analyzed. The results showed that E.coli inactivation by UV-PS was more effective than that by UV or PS alone. The addition of 0.3 mmol·L−1 PS elevated the logarithmic removal rate of E.coli by 1.0 lg compared with UV disinfection alone at the dosage of 15 mJ·cm−2. And the logarithmic removal rate of E.coli increased with the initial concentration of PS. The neutral conditions were more conducive to E.coli inactivation, while the presence of Fe2+ had the inhibition effect on E.coli inactivation. The photoreactivation rate of UV-PS disinfected E.coli was much lower than that of UV alone, and only high light intensity could cause the resurrection of some UV-PS disinfected E.coli. The morphological damage of E.coli cells in UV-PS process was more serious than that in UV process. Sulfate free radicals produced by UV-PS first attacked the cell surface, broke the cell structure and ruptured the cell membrane, and then oxidized and destroyed the cellular contents, eventually led to the death of E.coli cell. UV-PS showed high inactivation efficiency and strong inhibition effect on E.coli photoreactivation, and had a promising prospect for practical application.
-
-
[1] 张光辉, 孙迎雪, 顾平, 等. 紫外线灭活水中病原微生物[J]. 水处理技术, 2006, 32(5): 1463-1468. [2] REED D. Selecting alternatives to chlorine disinfection[J]. Pollution Engineering, 1998, 30(9): 48-51. [3] LINDEN K G, SHIN G A, FAUBERT G, et al. UV Disinfection of Giardia lamblia Cysts in water[J]. Environment Science Technology, 2002, 36(11): 2519-2522. doi: 10.1021/es0113403 [4] RAJALA-MUSTONEN R L, TOIVOLA P S, HEINONEN-TANSKI H, et al. Effects of peracetic acid and UV irradiation on the inactivation of coliphages in wastewater[J]. Water Science and Technology, 1997, 35(11): 237-241. [5] LOCAS A, DEMERS J, PAYMENTA P. Evaluation of photoreactivation of Escherichia coli and enterococci after UV disinfection of municipal wastewater[J]. Canadian Journal of Microbiology, 2008, 54(11): 971-975. doi: 10.1139/W08-088 [6] HIJNEN W A M, BEERENDONK E F, MEDEMA G J. Inactivation credit of UV radiation for viruses, bacteria and protozoan(oo) cysts in water: A review[J]. Water Research, 2006, 40: 3-22. doi: 10.1016/j.watres.2005.10.030 [7] 廖云燕, 刘国强, 赵力, 等. 利用热活化过硫酸盐技术去除阿特拉津[J]. 环境科学学报, 2014, 34(4): 931-937. [8] XIA D H, LI Y, HUANG G C, et al. Activation of persulfates by natural magnetic pyrrhotite for water disinfection: Efficiency, mechanisms, and stability[J]. Water Research, 2017, 112: 236-247. doi: 10.1016/j.watres.2017.01.052 [9] STANISŁAW, HOLGER V L, KLAUDIUSZ G, et al. Chemistry of persulfates in water and wastewater treatment: A review[J]. Chemical Engineering Journal, 2017, 30: 44-62. [10] NETA P, HUIE R, POSS A B. Rate constants for reactions of inorganic radicals in aqueous-solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. doi: 10.1063/1.555808 [11] 蒋梦迪, 张清越, 季跃飞, 等. 热活化过硫酸盐降解三氯生[J]. 环境科学, 2018, 39(4): 1661-1667. [12] 高金龙, 马玉琳, 孟庆来, 等. 二价铁活化过硫酸盐降解土壤中十溴联苯醚[J]. 环境工程学报, 2016, 10(12): 7339-7343. doi: 10.12030/j.cjee.201507210 [13] 孙昕, 史路肖, 张燚, 等. 真空紫外/过二硫酸盐去除饮用水中嗅味物质[J]. 环境科学, 2018, 39(5): 2195-2201. [14] KASHIMADA K, KAMIKO N, YAMAMOTO K, et al. Asessment of photoreactivation following ultraviolet light disinfection[J]. Water Science & Technology, 1996, 33(10/11): 261-269. [15] KOLLU K, ORMECI B. UV-induced self-aggregation of E.coli after low and medium pressure ultraviolet irradiation[J]. Journal of Photochemistry and Photobiology B: Biology, 2015, 148: 310-321. doi: 10.1016/j.jphotobiol.2015.04.013 [16] AZIMI Y, ALLEN D G, FARNOOD R R. Kinetics of UV inactivation of wastewater bioflocs[J]. Water Research, 2012, 46(12): 3827-3836. doi: 10.1016/j.watres.2012.04.019 [17] SNOWBALL M R, HORNSEY I S. Purification of water supplies using ultraviolet light[J]. Journal of Vacuum Science & Technology A: Vacuum Surfaces & Films, 1998, 2(2): 1037-1038. [18] FARIBORZ T. Ultraviolet and ionizing radiation for microorganism inactivation[J]. Water Research, 2004, 38(6): 3940-3948. [19] FOEGEDING P M. Ozone inactivation of Bacillus and Clostridium spore populations and the importance of the spore coat to resistance[J]. Food Microbiology, 1985, 2(2): 123-134. doi: 10.1016/S0740-0020(85)80005-8 [20] KHADRE M A, YOUSEF A E. Sporicidal action of ozone and hydrogen peroxide: A comparative study[J]. International Journal of Food Microbiology, 2002, 71(2/3): 131-138. [21] HORI H, YAMAMOTO A, HAYAKAWA E, et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant[J]. Environmental Science & Technololgy, 2005, 39(7): 2383-2388. [22] MCCALLUM J E B, MADISON S A, DEPINTO R L, et al. Analytical studies on the oxidative degradation of the reactive dye uniblue A[J]. Environmental Science and Technology, 2000, 34(24): 5157-5164. doi: 10.1021/es0008665 [23] 孙艳芝, 李彩鹦, 万平玉, 等. 紫外分光光度计法测定硝酸盐氮时消除铁离子干扰的新方法[J]. 光谱实验室, 2011, 28(6): 3143-3147. doi: 10.3969/j.issn.1004-8138.2011.06.093 [24] 郭美婷, 胡洪营, 李莉. 污水紫外线消毒工艺的影响因素研究[J]. 中国环境科学, 2007, 27(4): 534-538. doi: 10.3321/j.issn:1000-6923.2007.04.021 [25] EDE S, HAFNER L, DUNLOP P, et al. Photocatalytic disinfection of bacterial pollutants using suspended and immobilized TiO2 powders[J]. Photochemistry and Photobiology, 2012, 88(3): 728-735. doi: 10.1111/php.2012.88.issue-3 [26] NATH R K, ZAIN M F M, KADHUM A A H. Photocatalysis: A novel approach for solving various environmental and disinfection problems: A brief review[J]. Journal of Applied Sciences Research, 2012, 8(8): 4147-4155. [27] 郭美婷, 胡洪营, 刘文君. 避光处理对污水紫外线消毒后大肠杆菌光复活的影响研究[J]. 环境科学, 2008, 29(6): 1644-1648. doi: 10.3321/j.issn:0250-3301.2008.06.033 [28] 朱红. 紫外及紫外联合灭活地下水供水系统中真菌效能及机理研究[D]. 西安: 西安建筑科技大学, 2017.