贵州草海喀斯特高原湿地水环境中典型抗生素的分布特征
Occurrence and distribution of typical antibiotics in the aquatic environment of the wetland karst plateau in Guizhou
-
摘要: 为了初步探讨喀斯特地貌草海湿地环境中抗生素的污染水平、空间分布特征和生态风险,采用固相萃取和高效液相色谱-串联质谱法研究了地表水和沉积物样品中34种典型抗生素的含量水平,并通过风险商值法(RQ)进行生态风险评估.结果表明,33种抗生素在地表水中均有不同程度的检出,磺胺类、喹诺酮类、大环内酯类、氯霉素类和其他类抗生素的平均浓度分别为50.5 ng·L-1、43.2 ng·L-1、22.6 ng·L-1、15.9 ng·L-1和1.66 ng·L-1.喹诺酮类在沉积物中检出浓度最高,平均浓度为282 ng·g-1且高于地表水.在空间分布上,地表水呈现上游入湖口平均浓度(379 ng·L-1)高于下游出湖口平均浓度(50.4 ng·L-1);草海近岸区南侧沉积物中抗生素浓度高于湖心区和近岸区北侧.风险评估结果表明,单一抗生素SD、NOR、SAR、CTM、ROX和LIN等物质的RQs大于1呈高风险,SMX、SG、CIP、OFL、ENR和ERY等6种抗生素RQs 在0.1≤RQs<1之间,呈中度风险;SMZ、SPD、FF和CAP等抗生素的RQs小于0.1;抗生素联合风险显示湖心区、南岸区以及出湖口呈现中度风险,其他近城市排污口呈高风险,抗生素联合风险商值明显高于单一抗生素的风险商值.整体看来,人类活动强度与草海水环境中抗生素的污染程度密切相关.Abstract: 34 antibiotics in the surface water and the sediment of the Caohai wetland were detected using solid-phase extraction and high performance liquid chromatography tandem mass spectrometry, and ecological risk was assessed by risk quotients, in order to investigate the contamination levels, spatial distribution characteristics and ecological risks of antibiotics in the aquatic environment of the Caohai wetland karst plateau in Guizhou. Results showed that 33 antibiotics were detected in different degrees on the surface. Sulfonamides presented the highest average concentration (50.5 ng·L-1) among all antibiotics, followed by quinolones (43.2 ng·L-1),macrolides (22.6 ng·L-1), chloramphenicols(40.8 ng·L-1) and Others(1.66 ng·L-1), respectively. Quinolones was the major detected antibiotics in the sediments, with the highest average concentration of 282 ng·g-1,which was higher than the average concentration of surface water. Spatial distribution of antibiotics detected in the surface water of Caohai wetland showed that the lake entrance(upstream) was higher than the lake exit(downstream), with average concentrations of 379 ng·L-1, 50.4 ng·L-1, respectively. The concentration of antibiotics in the sediments on the south side of the coastal area was higher than that of the lake center and near North side of the shore area. Risk assessment showed that the RQs value of SD, NOR, SAR, CTM, ROX and LIN was higher than 1, and the RQs SMX, SG, CIP, OFL, ENR and ERY were between 0.1 and 1, which presented the high risk and medium risk, respectively. However, the RQs value of SMZ, SPD, FF and CAP were less than 0.1, which presented the low risk. The combined risk of antibiotics showed moderate risk in the lake heart area, the south bank area and the lake exit. The pollution discharges of other near cities presented high risk, and the combined risk value of antibiotics was significantly higher than the risk quotient of single antibiotics. Overall, the intensity of human activity was closely related to the degree of contamination of antibiotics in grassy seawater environments.
-
Key words:
- Karst plateau /
- Caohai wetland /
- antibiotics /
- contamination characteristics /
- risk assessment
-
[1] KVMMERER K. Antibiotics in the aquatic environment-a review-part I[J]. Chemosphere, 2009, 75(4):417-434. [2] KLEIN E Y, BOECKEL T P V, MARTINEZ E M, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015[J]. Proc Natl Acad Sci U S A, 2018, 115(15):3463-3470. [3] LI W, SHI Y, GAO L, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012, 89(11):1307-1315. [4] 贾瑷, 胡建英, 孙建仙, 等. 环境中的医药品与个人护理品[J]. 化学进展, 2009, 21(Z1):389-399. JIA A, HU J Y, SUN J X, et al. Pharmaceuticals and personal care products(PPCPs)in environment[J]. Progress in Chemistry, 2009, 21(Z1):389-399(in Chinese).
[5] EDHLUND B L, ARNOLD W A, KRISTOPHER M N. Aquatic photochemistry of nitrofuran antibiotics[J]. Environmental Science & Technology, 2006, 40(17):5422-5427. [6] SKARIYACHAN S, MAHAJANAKATTI A B, GRANDHI N J, et al. Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India[J]. Environmental Monitoring and Assessment, 2015, 187(5):202-211. [7] 王丹, 隋倩, 赵文涛,等. 中国地表水环境中药物和个人护理品的研究进展[J]. 科学通报, 2014, 59(9):743-751. WANG D, SUI Q, ZHAO W T, et al. Pharmaceutical and personal care products in the surface water of China:A review[J]. Chinese Science Bulletin, 2014, 59(9):743-751(in Chinese).
[8] 章强, 辛琦, 朱静敏,等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7):1075-1083. ZHANG Q, XIN Q, ZHU J M, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environmental Chemistry, 2014, 33(7):1075-1083(in Chinese).
[9] XU W H, ZHANG G, ZOU S C, et al. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Environmental Pollution, 2007, 145(3):672-679. [10] JIANG L, HU X, YIN D, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6):822-828. [11] ZHOU L J, WU Q L, ZHANG B B, et al. Occurrence, spatiotemporal distribution, mass balance and ecological risks of antibiotics in subtropical shallow Lake Taihu, China[J]. Environ Sci Process Impacts, 2016, 18(4):500-513. [12] 周晨, 喻理飞, 蔡国俊,等. 草海高原湿地湖泊水质时空变化及水质分区研究[J]. 水生态学杂志, 2016, 37(1):24-30. ZHOU C, YU L F, CAI G J, et al. Spatial-temporal variation of water quality in Caohai Lake[J].Journal of Hydroecology, 2016, 37(1):24-30(in Chinese).
[13] [14] 周晨. 草海湿地水质富营养化与生物多样性风险预警研究——以浮游植物和底栖动物为例[D].贵阳:贵州大学, 2016. ZHOU C. Study on the early-warning of water eutrophication and biodiversity risk in Caohai Wetland——Take phytoplankton and macrobenthos as an example[D]. Guiyang:Guizhou University, 2016(in Chinese). [15] 孔凡翠, 杨瑞东, 魏怀瑞, 等. 贵州威宁草海第四系窑上组沉积物微量元素地球化学特征及其古环境意义[J]. 海洋地质与第四纪地质, 2011(5):117-126. SUN F C, YANG R D,WEI H R, et al. Geochemistry of trace elements of the quaternary sediments of Yaoshang Formation in Weining County, Guizhou Province and its paleoenvironmental implications[J].Marine Geology & Quaternary Geology, 2011 (5):117-126(in Chinese).
[16] 卓勇, 吴勇, 孙为奕, 等. 贵州威宁草海地区地下水化学特征与控制因素研究[J]. 科学技术与工程, 2016, 16(8):59-65. ZHUO Y, WU Y, SUN W Y, et al. Hydrochemistry characteristic and the control factor of groundwater of Caohai Area in Weining County,Guizhou Province[J].Science Technology and Engineering, 2016, 16(8):59-65(in Chinese).
[17] 宋以龙, 曾艳, 杨海全, 等. 贵州草海沉积物重金属时空分布特征与生态风险评价[J]. 生态学杂志, 2016, 35(7):1849-1856. SONG Y L, ZENG Y, YANG H Q, et al. Spatiotemporal distribution and potential ecological risk assessment of heavy metals in the sediments of Lake Caohai,Guizhou,China[J].Chinese Journal of Ecology, 2016, 35(7):1849-1856(in Chinese).
[18] 赵斌,朱四喜,杨秀琴,等.草海湖沉积物重金属污染现状及生态风险评价[J].环境科学研究, 2019, 32(2):59-69. ZHAO B, ZHU S X, YANG A Q, et al. Pollution status and ecological risk assessment of heavy metals in sediments of Caohai Lake[J].Research of Environmental Sciences, 2019, 32(2):59-69(in Chinese).
[19] 王娅南, 彭洁, 黄合田, 等. 贵阳市城市河流典型抗生素的分布特征[J]. 环境化学, 2018, 37(9):160-169. WANG Y N, PENG J, HUANG H T, et al. Distribution characteristics of typical antibiotics in urban rivers of Guiyang City[J].Environmental Chemistry, 2018, 37(9):160-169(in Chinese).
[20] ZHANG R, ZHANG G, ZHENG Q, et al. Occurrence and risks of antibiotics in the Laizhou Bay, China:Impacts of river discharge[J]. Ecotoxicology & Environmental Safety, 2012, 80(none):208-215. [21] TOLLS J. Sorption of veterinary pharmaceuticals in soils:A review[J]. Environmental Science & Technology, 2001, 35(17):3397-3406. [22] TEMESGEN G, UMAMAHESHWAR S K, ALISON M. Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation[J]. Chemosphere, 2010, 79(8):814-820. [23] 李秀文, 何益得, 张巍, 等. 磺胺类抗生素对水环境的污染及生态毒理效应[J]. 环境科学与技术, 2018(S1):68-73. LI X W, HE Y D, ZHANG W, et al. Pollution status of sulfonamides in aquatic environment and its ecotoxicological effects on aquatic organisms[J].Environmental Science & Technology,2018 (S1):68-73(in Chinese).
[24] 郭欣妍, 王娜, 许静, 等. 5种磺胺类抗生素在土壤中的吸附和淋溶特性[J]. 环境科学学报, 2013, 33(11):3083-3091. GUO X Y, WANG N, XU J, et al. Adsorption and leaching behavior of sulfonamides in soils[J].Acta Scientiae Circumstantiae, 2013, 33(11):3083-3091(in Chinese).
[25] ZHOU L J, WU Q L, ZHANG B B, et al. Occurrence, spatiotemporal distribution, mass balance and ecological risks of antibiotics in the subtropical shallow Lake Taihu, China[J]. Environmental Science:Processes and Impacts, 2016, 18(4):500-513. [26] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782. [27] KURWADKAR S T, ADAMS C D, MEYER M T, et al. Comparative mobility of sulfonamides and bromide tracer in three soils[J]. Journal of Environmental Management, 2011, 92(7):1874-1881. [28] 王丽平, 章明奎, 郑顺安. 土壤中恩诺沙星的吸附-解吸特性和生物学效应[J]. 土壤通报, 2008, 39(2):393-397. WANG L P, ZHANG M K, ZHEN S A. Adsorption-desorption characteristics and biological effects of enrofloxacin in agricultural soils[J].Chinese Journal of Soil Science, 2008, 39(2):393-397(in Chinese).
[29] LAI H T, LIN J J. Degradation of oxolinic acid and flumequine in aquaculture pond waters and sediments.[J]. Chemosphere, 2009, 75(4):462-468. [30] 李嘉, 张瑞杰, 王润梅,等. 小清河流域抗生素污染分布特征与生态风险评估[J]. 农业环境科学学报, 2016, 35(7):1384-1391. LI J, ZHUAG R J, WANG R M, et al. Distribution characteristics and ecological risk assessment of antibiotic pollution in Xiaoqing Rive watershed[J].Journal of Agro-Environment Science, 2016, 35(7):1384-1391(in Chinses).
[31] MCARDELL C S, MOLNAR E, SUTER M J, et al. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley watershed, Switzerland[J]. Environmental Science & Technology, 2003, 37(24):5479. [32] XU W, ZHANG G, ZOU S, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China[J]. Water Environment Research A Research Publication of the Water Environment Federation, 2009, 81(3):248-254. [33] 张晓娇, 柏杨巍, 张远,等. 辽河流域地表水中典型抗生素污染特征及生态风险评估[J]. 环境科学, 2017, 38(11):4553-4561. ZHANG X J, BAI Y W, ZHANG Y, et al. Occurrence, distribution, and ecological risk of antibiotics in surface water in the Liaohe River Basin, China[J].Environmental Science, 2017, 38(11):4553-4561(in Chinese).
[34] XU W H, ZHANG G, ZOU S C, et al. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Environmental Pollution, 2007, 145(3):672-679. [35] JIANG L, HU X, YIN D, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6):822-828. [36] GAO L, SHI Y, LI W, et al. Occurrence, distribution and bioaccumulation of antibiotics in the Haihe River in China[J]. Journal of Environmental Monitoring, 2012, 14(4):1248-1255. [37] WATANABE N, BERGAMASCHI B A, LOFTIN K A, et al. Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields[J]. Environmental Science & Technology, 2010, 44(17):6591-6600. [38] TANG J, SHI T, WU X, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China:Seasonal variation, potential source and risk assessment[J]. Chemosphere, 2015, 122:154-161. [39] LUO L C, QIN B Q. Hydrodynamics and Its Effects on the Aquatic Ecosystem[M]. Lake Taihu, China. 2008. [40] BATT A L, BRUCE I B, AGA D S. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges[J]. Environmental Pollution, 2006, 142(2):295-302. [41] TAMTAM F, MERCIER F, BOT B L, et al. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions[J]. Science of the Total Environment, 2008, 393(1):84-95. [42] ZUCCATO E, CASTIGLIONI S, BAGNATI R, et al. Source, occurrence and fate of antibiotics in the Italian aquatic environment[J]. Journal of Hazardous Materials, 2010, 179(1):1042-1048. [43] KHAN G A, BERGLUND B, KHAN K M, et al. Occurrence and abundance of antibiotics and resistance genes in rivers, canal and near drug formulation facilities:A study in Pakistan.[J]. Plos One, 2013, 8(6):e62712. [44] XUE B, ZHANG R, WANG Y, et al. Antibiotic contamination in a typical developing city in south China:Occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities.[J]. Ecotoxicol Environ Saf, 2013, 92(3):229-236. [45] 魏红, 王嘉玮, 杨小雨,等. 渭河关中段表层水中抗生素污染特征与风险[J]. 中国环境科学, 2017, 37(6):2255-2262. WEI H, WANG J W, YANG X Y, et al. Contamination characteristic and ecological risk of antibiotics in surface water of the Weihe Guanzhong section[J].China Environmental Science, 2017, 37(6):2255-2262(in Chinese).
[46] [47] 郭睿, 王山军, 昌盛,等. 嘉兴市饮用水源及城市河网抗生素分布特征[J]. 环境化学, 2016, 35(9):1842-1852. GUO R, WANG S J, CHANG S, et al. Distribution characteristics of antibiotics in Jiaxing drinking water source and urban river[J].Environmental Chemistry, 2016, 35(9):1842-1852(in Chinses).
[48] 徐晨. 三峡库区水体、土壤和沉积物中抗生素与抗生素抗性基因的污染特征[D].武汉:中国科学院武汉植物园,2017. XU C. Contamination of Antibiotic and antibiotic resistance genes in water, soil and sediment of the Three Gorges Reservior[D]. Wuhan:Wuhan Botanical Garden of the Chinese Academy of Sciences, 2017(in Chinses). [49] 杨海全, 陈敬安, 宋以龙,等. 草海沉积物有机质空间分布与来源识别[J]. 绵阳师范学院学报, 2017, 36(8):1-9. YANG H Q, CHEN J A, ZHU Y L, et al. The distribution characteristics and sources of organic carbon in sediments of Caohai Lake[J]. Journal of Mianyang Teachers'College, 2017, 36(8):1-9(in Chinses).
[50] TOLLS J. Sorption of veterinary pharmaceuticals in soils:A review[J]. Environmental Science & Technology, 2001, 35(17):3397-3406. [51] YANG J, YING G, ZHAO J, et al. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS[J]. Science of the Total Environment, 2010, 408(16):3424-3432. [52] KIM S, CARLSON K. LC-MS2 for quantifying trace amounts of pharmaceutical compounds in soil and sediment matrices[J]. TrAC-Trends in Analytical Chemistry, 2005, 24(7):635-644. [53] BATT A L, BRUCE I B, AGA D S. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges[J]. Environmental Pollution, 2006, 142(2):295-302. [54] YANG J F, YING G G, ZHAO J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. Journal of Environmental Science and Health Part B Pesticides Food Contaminants and Agricultural Wastes, 2011, 46(3):272-280. [55] 封丽, 程艳茹, 封雷,等. 三峡库区主要水域典型抗生素分布及生态风险评估[J]. 环境科学研究, 2017, 30(7):1031-1040. FENG L, CHENG Y R, FENG L, et al. Distribution of typical antibiotics and ecological risk assessment in main waters of Three Gorges Reservoir area[J]. Research of Environmental Sciences, 2017, 30(7):1031-1040(in Chinses).
[56] ARPIN-PONT L, BUENO M J M, GOMEZ E, et al. Occurrence of PPCPs in the marine environment:A review[J]. Environmental Science and Pollution Research, 2016, 23(6):4978-4991. [57] GUO J, SELBY K, BOXALL A B A. Assessment of the risks of mixtures of major use veterinary antibiotics in european surface waters[J]. Environmental Science & Technology, 2016:acs.est.6b01649.
计量
- 文章访问数: 2520
- HTML全文浏览数: 2520
- PDF下载数: 70
- 施引文献: 0