基于常规饮用水工艺羟基自由基处理高藻水

白敏冬, 李海燕, 满化林, 黄孟斌, 郑武, 田一平, 张芝涛. 基于常规饮用水工艺羟基自由基处理高藻水[J]. 环境工程学报, 2017, 11(9): 4897-4902. doi: 10.12030/j.cjee.201611225
引用本文: 白敏冬, 李海燕, 满化林, 黄孟斌, 郑武, 田一平, 张芝涛. 基于常规饮用水工艺羟基自由基处理高藻水[J]. 环境工程学报, 2017, 11(9): 4897-4902. doi: 10.12030/j.cjee.201611225
BAI Mindong, LI Haiyan, MAN Hualin, HUANG Mengbin, ZHENG Wu, TIAN Yiping, ZHANG Zhitao. Treatment of algae bloom water using ·OH based on conventional drinking water process[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 4897-4902. doi: 10.12030/j.cjee.201611225
Citation: BAI Mindong, LI Haiyan, MAN Hualin, HUANG Mengbin, ZHENG Wu, TIAN Yiping, ZHANG Zhitao. Treatment of algae bloom water using ·OH based on conventional drinking water process[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 4897-4902. doi: 10.12030/j.cjee.201611225

基于常规饮用水工艺羟基自由基处理高藻水

  • 基金项目:

    国家科技支撑计划项目(2013BAC06B01,2013BAC06B02)

    国家重大科研仪器研制项目(61427804)

    科技部创新人才推进计划重点领域创新团队(2015RA4008)

  • 中图分类号: X703.1

Treatment of algae bloom water using ·OH based on conventional drinking water process

  • Fund Project:
  • 摘要: 我国水体的富营养化日益严重,水源地出现季节性藻类爆发现象,严重威胁饮用水安全。以厦门市莲坂水厂各工艺段出水为研究对象,采用大气压强电离放电产生羟基自由基(·OH),分别对水源水、混凝沉淀出水、砂滤出水进行处理,处理时间为4.5 s。当注入总氧化剂浓度为1.8 mg· L-1时,高藻浓度从25.3×104 cells · mL-1降到800 cells · mL-1;对混凝沉淀出水注入总氧化剂0.6 mg· L-1、砂滤出水注入0.2 mg· L-1时,藻细胞都未检出;·OH处理后CODMn、TOC及UV254均有明显降低,砂滤出水三卤甲烷小于8 μg·L-1;检测的各项指标均达到国家《生活饮用水卫生标准》(GB 5479-2006)。因此,·OH可快速有效安全地杀灭高藻,为我国高藻水源地饮用水卫生安全保障提供技术支撑。
  • 加载中
  • [1] ZAMYADI A, FAN Y, DALY R, et al. Chlorination of Microcystis aeruginosa:Toxin release and oxidation, cellular chlorine demand and disinfection by-products formation[J]. Water Research,2013,47(3):1080-1090
    [2] ZHANG R, YUAN D X, LIU B M. Kinetics and products of ozonation of CI Reactive Red 195 in a semi-batch reactor[J].Chinese Chemical Lefters, 2015, 26(1):93-99
    [3] CORAL L A, ZAMYADI A, BARBEAU B, et al. Oxidation of Microcystis aeruginosa and Anabaena flos-aquae by ozone:Impacts on cell integrity and chlorination by-product formation[J]. Water Research, 2013,47(9):2983-2994
    [4] 顾雨辰, 张光生, 郝小龙,等. 高压脉冲气液混合放电等离子体对铜绿微囊藻的灭活研究[J]. 上海环境科学, 2013, 32(6):257-263
    [5] 洪伟辰, 白敏冬, 满化林,等. 气浮-·OH强氧化组合工艺处理高藻水的研究[J]. 中国环境科学, 2015, 35(12):3634-3639
    [6] BAI M D, ZHENG Q L, TIAN Y P, et al. Inactivation of invasive marine species in the process of conveying ballast water using ·OH based on a strong ionization discharge[J]. Water Research, 2016,96:217-224
    [7] BAI M D, ZHANG Z T, ZHANG N H, et al. Treatment of 250 t·h-1 ballast water in oceanic ships using ·OH radicals based on strong electric-field discharge[J]. Plasma Chemistry and Plasma Processing, 2012,32(4):693-702
    [8] FAN J J, HO L, HOBOSON P, et al. Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity[J]. Water Research, 2013,47(14):5153-5164
    [9] DALY R I, HO L, BROOKES J D. Effect of chlorinationon on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation[J]. Environmental Science & Technology, 2007,41(12):4447-4453
    [10] ZAMYADI A, HO L, NEWCOMBE G, et al. Fate of toxic cyanobacterial cells and disinfection by-products formation after chlorination[J]. Water Research, 2012,46(5):1524-1535
    [11] 关春雨, 马军, 鲍晓丽,等. 臭氧催化氧化-活性炭处理微污染源水[J]. 水处理技术, 2007,33(11):75-78
    [12] EDZWALD J K. Coagulation in drinking water treatment:Particles, organics and coagulants[J]. Waterence & Technology, 1993, 27(11):21-35
    [13] NEALE P A, ANTONY A, BARTKOW M E, et al. Bioanalytical assessment of the formation of disinfection byproducts in a drinking water treatment plant[J]. Environmental Science & Technology, 2012,46(18):10317-10325
    [14] 张锁娜, 王海波, 李肖肖,等. 臭氧对饮用水中氯化消毒副产物生成的影响[J]. 环境工程学报, 2014,8(10):4091-4096
    [15] HUANG W W, CHU H Q, DONG B Z, et al. A membrane combined process to cope with algae blooms in water[J]. Desalination, 2014, 355:99-109
    [16] GAO S S, YANG J X, TIAN J Y, et al. Electro-coagulation-flotation process for algae removal[J]. Journal of Hazardous Materials, 2010, 177(1/2/3):336-343
  • 加载中
计量
  • 文章访问数:  2967
  • HTML全文浏览数:  2286
  • PDF下载数:  599
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-01-17
  • 刊出日期:  2017-08-26
白敏冬, 李海燕, 满化林, 黄孟斌, 郑武, 田一平, 张芝涛. 基于常规饮用水工艺羟基自由基处理高藻水[J]. 环境工程学报, 2017, 11(9): 4897-4902. doi: 10.12030/j.cjee.201611225
引用本文: 白敏冬, 李海燕, 满化林, 黄孟斌, 郑武, 田一平, 张芝涛. 基于常规饮用水工艺羟基自由基处理高藻水[J]. 环境工程学报, 2017, 11(9): 4897-4902. doi: 10.12030/j.cjee.201611225
BAI Mindong, LI Haiyan, MAN Hualin, HUANG Mengbin, ZHENG Wu, TIAN Yiping, ZHANG Zhitao. Treatment of algae bloom water using ·OH based on conventional drinking water process[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 4897-4902. doi: 10.12030/j.cjee.201611225
Citation: BAI Mindong, LI Haiyan, MAN Hualin, HUANG Mengbin, ZHENG Wu, TIAN Yiping, ZHANG Zhitao. Treatment of algae bloom water using ·OH based on conventional drinking water process[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 4897-4902. doi: 10.12030/j.cjee.201611225

基于常规饮用水工艺羟基自由基处理高藻水

  • 1. 厦门大学环境与生态学院, 海洋生物资源开发利用协同创新中心, 厦门 361102
  • 2. 大连海事大学环境工程研究所, 大连 116026
基金项目:

国家科技支撑计划项目(2013BAC06B01,2013BAC06B02)

国家重大科研仪器研制项目(61427804)

科技部创新人才推进计划重点领域创新团队(2015RA4008)

摘要: 我国水体的富营养化日益严重,水源地出现季节性藻类爆发现象,严重威胁饮用水安全。以厦门市莲坂水厂各工艺段出水为研究对象,采用大气压强电离放电产生羟基自由基(·OH),分别对水源水、混凝沉淀出水、砂滤出水进行处理,处理时间为4.5 s。当注入总氧化剂浓度为1.8 mg· L-1时,高藻浓度从25.3×104 cells · mL-1降到800 cells · mL-1;对混凝沉淀出水注入总氧化剂0.6 mg· L-1、砂滤出水注入0.2 mg· L-1时,藻细胞都未检出;·OH处理后CODMn、TOC及UV254均有明显降低,砂滤出水三卤甲烷小于8 μg·L-1;检测的各项指标均达到国家《生活饮用水卫生标准》(GB 5479-2006)。因此,·OH可快速有效安全地杀灭高藻,为我国高藻水源地饮用水卫生安全保障提供技术支撑。

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回