上海市大气PM2.5时空分布特征
Temporal and spatial distribution of PM2.5 in Shanghai based on clustering analysis
-
摘要: 对2014年上海市大气监测国控点的PM2.5浓度数据进行统计分析和聚类分析。统计分析结果表明,上海市PM2.5浓度冬春季高,夏秋季低,按月呈U形分布,且上海市大气PM2.5浓度在空间上总体趋势呈西高东低。利用MATLAB的聚类分析结果表明上海市的10个监测站可分为4类:1)跨省传输影响显著的青浦淀山湖站;2)受海洋大气影响显著的浦东川沙站;3)不稳定的过渡类,其包括杨浦四漂和浦东张江监测站;4)受本地排放影响显著的中心城区类,其包括普陀、十五厂(卢湾师专附小)、徐汇上师大、虹口凉城、静安和浦东新区监测站。本文聚类分析结果揭示了上海不同地理位置的大气PM2.5浓度的相互关系。Abstract: Statistical analysis and clustering analysis of observed daily PM2.5 concentrations in 2014 were conducted for Shanghai using Matlab software. The results indicated that PM2.5 concentrations were higher in spring and winter, than those in summer and autumn, The annual distribution of PM2.5 concentrations showed U-shape. Spatial distribution showed that PM2.5 concentrations were higher in the west while they were lower in the east. According to results of the clustering analysis,Ten monitoring sites in shanghai could be grouped into 4 group scategories:1)The Dianshan Lake site in Qingpu whose PM2.5 concentrations wereis significantly influenced by the cross-provinciale transportation;2)The Chuansha site in Pudong whose PM2.5 concentrations wereis easily diluted by clean wind from ocean;3)Unstable and interim sites,including Sipiao site in Yangpu and Zhangjiang sites in Pudong;4)The central urban area group whose PM2.5 concentrations were significantly impacted by local emission, including Putuo site, Shiwu factory(School of Luwan Normal College) site, Shanghai Normal University site in Xuhui, Liangcheng site in Hongkou, Jing'an site and site of Pudong New Area. The clustering analysis results revealed the inter-relationship of the PM2.5 concentrations among these monitoring sites in shanghai.
-
Key words:
- PM2.5 /
- clustering analysis /
- monitoring site /
- MATLAB /
- shanghai
-
-
[1] 王振波, 方创琳, 许光,等. 2014年中国城市PM2.5浓度的时空变化规律[J]. 地理学报, 2015(11):1720-1734 [2] WANG Y, LI L, CHEN C, et al. Source apportionment of fine particulate matter during autumn haze episodes in Shanghai, China[J]. Journal of Geophysical Research, 2014, 119(4):1903-1914 [3] 张殷俊, 陈曦, 谢高地, 等.中国细颗粒物(PM2.5)污染状况和空间分布[J]. 资源科学,2015,37(7):1339-1346 [4] ZHU X, LIU Y, CHEN Y, et al. Maternal exposure to fine particulate matter (PM2.5) and pregnancy outcomes:A meta-analysis[J]. Environmental Science and Pollution Research,2015,22(5):3383-3396 [5] 殷永文, 程金平, 段玉森, 等. 上海市霾期间PM2.5, PM10 污染与呼吸科, 儿呼吸科门诊人数的相关分析[J].环境科学,2014,32(7):1894-1898 [6] YE B, JI X, YANG H, et al. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period[J]. Atmospheric Environment,2003,37(4):499-510 [7] WANG Y, ZHUANG G, ZHANG X, et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai[J].Atmospheric Environment,2006,40(16):2935-2952 [8] 徐建辉, 江洪. 长江三角洲PM2.5 质量浓度遥感估算与时空分布特征[J].环境科学,2015,36(9):3119-3127 [9] PERRONE M R, BECAGLI S, ORZA J G, et al. The impact of long-range-transport on PM1 and PM2.5 at a Central Mediterranean site[J]. Atmospheric Environment,2013,71:176-186 [10] SALVADOR P, ARTÍÑANO B, QUEROL X, et al. A combined analysis of backward trajectories and aerosol chemistry to characterise long-range transport episodes of particulate matter:The Madrid air basin, a case study[J]. Science of the Total Environment,2008,390(2):495-506 [11] GB 3095.环境空气质量标准[S].北京:中国环境科学出版社,2012 [12] 王怀亮. 箱须图在识别统计数据异常值中的作用及R语言实现[J].商业经济,2011(5):64-65 [13] 孙冉, 王成都, 刘国东. 2014年成都市PM2.5污染及其与气象要素的关系[J]. 环境工程, 2015,(S1):472-475 -

计量
- 文章访问数: 1952
- HTML全文浏览数: 1624
- PDF下载数: 404
- 施引文献: 0