基于Fluent城市大气污染物扩散数值模拟

杨志斌, 袁德奎. 基于Fluent城市大气污染物扩散数值模拟[J]. 环境工程学报, 2016, 10(3): 1365-1369. doi: 10.12030/j.cjee.20160358
引用本文: 杨志斌, 袁德奎. 基于Fluent城市大气污染物扩散数值模拟[J]. 环境工程学报, 2016, 10(3): 1365-1369. doi: 10.12030/j.cjee.20160358
Yang Zhibin, Yuan Dekui. Numerical simulation of atmospheric pollutants dispersion in urban based on Fluent[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1365-1369. doi: 10.12030/j.cjee.20160358
Citation: Yang Zhibin, Yuan Dekui. Numerical simulation of atmospheric pollutants dispersion in urban based on Fluent[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1365-1369. doi: 10.12030/j.cjee.20160358

基于Fluent城市大气污染物扩散数值模拟

  • 基金项目:

    教育部新世纪优秀人才支持计划(NCET-12-0406)

  • 中图分类号: X169

Numerical simulation of atmospheric pollutants dispersion in urban based on Fluent

  • Fund Project:
  • 摘要: 城市大气污染问题已经引起广泛的关注,其中对城市中大气污染物的迁移扩散过程还需进一步研究。为了探究城市复杂地形下大气污染物扩散预测的新模式,采用计算流体力学方法,建立了数值预测模型,构造出水平均匀的大气边界层模拟风场;进一步对建筑物影响下的大气污染物扩散过程进行了模拟,并与实验结果进行了对比。结果表明:数值模拟结果与实验结果基本吻合,计算流体力学方法可用于城市复杂地形下大气污染问题的研究工作;模拟结果与湍流模型的选取和湍流施密特数的设置有密切关系;采用SST k-ω湍流模型对此类问题较适宜,随着湍流施密特数的增大,扩散范围逐渐增大。
  • 加载中
  • [1] Neofytou P, Venetsanos A. G., Rafailidis S., et al. Numerical investigation of the pollution dispersion in an urban street canyon. Environmental Modelling & Software, 2006, 21(4):525-531
    [2] Blocken B., Stathopoulos T., Saathoff P., et al. Numerical evaluation of pollutant dispersion in the built environment:Comparisons between models and experiments. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10-11):1817-1831
    [3] Tominaga Y., Stathopoulos T. CFD simulation of near-field pollutant dispersion in the urban environment:A review of current modeling techniques. Atmospheric Environment, 2013, 79:716-730
    [4] 张宁, 蒋维楣. 建筑物对大气污染物扩散影响的大涡模拟. 大气科学, 2006, 30(2):212-220 Zhang Ning, Jiang Weimei. A large eddy simulation on the effect of building on atmospheric pollutant dispersion. Chinese Journal of Atmospheric Sciences, 2006, 30(2):212-220(in Chinese)
    [5] 李磊,胡非,程雪玲,等.Fluent在城市街区大气环境中的一个应用.中国科学院研究生院学报,2004, 21(4):476-480 Li Lei, Hu Fei, Cheng Xueling, et al. An application of fluent on the study of the atmospheric environment in urban streets. Journal of the Graduate School of the Chinese Academy of Sciences, 2004, 21(4):476-480(in Chinese)
    [6] Tominaga Y., Stathopoulos T. Turbulent Schmidt numbers for CFD analysis with various types of flowfield. Atmospheric Environment, 2007, 41(37):8091-8099
    [7] Wang Xin, McNamara K. F. Evaluation of CFD simulation using RANS turbulence models for building effects on pollutant dispersion. Environmental Fluid Mechanics, 2006, 6(2):181-202
    [8] 崔桂香, 张兆顺, 许春晓, 等. 城市大气环境的大涡模拟研究进展. 力学进展, 2013, 43(3):295-328 Cui Guixiang, Zhang Zhaoshun, Xu Chunxiao, et al. Research advances in large eddy simulation of urban atmospheric environment. Advances in Mechanics, 2013, 43(3):295-328(in Chinese)
    [9] Launder B. E., Spalding D. B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2):269-289
    [10] Shih T. H., Liou W. W., Shabbir A., et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 1995, 24(3):227-238
    [11] Murakami S. Comparison of various turbulence models applied to a bluff body. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46-47:21-36
    [12] Menter F. R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8):1598-1605
    [13] Lun Y. F., Mochida A., Murakami S., et al. Numerical simulation of flow over topographic features by revised k-ε models. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1-2):231-245
    [14] Loureiro J. B. R., Alho A. T. P., Silva F. A. P. The numerical computation of near-wall turbulent flow over a steep hill. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(5):540-561
    [15] El-Behery S. M., Hamed M. H. A comparative study of turbulence models performance for separating flow in a planar asymmetric diffuser. Computers & Fluids, 2011, 44(1):248-257
    [16] Richards P. J., Hoxey R. P. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46-47:145-153
    [17] Yang Yi, Gu Ming, Chen Suqin, et al. New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(2):88-95
    [18] 胡朋, 李永乐, 廖海黎. 基于SST k-ω湍流模型的平衡大气边界层模拟. 空气动力学报, 2012, 30(6):737-743 Hu Peng, Li Yongle, Liao Haili. Simulation of equilibrium atmosphere boundary layer with SST k-ω turbulence model. Acta Aerodynamica Sinica, 2012, 30(6):737-743(in Chinese)
    [19] Koeltzsch K. The height dependence of the turbulent Schmidt number within the boundary layer. Atmospheric Environment, 2000, 34(7):1147-1151
    [20] Flesch T. K., Prueger J. H., Hatfield J. L. Turbulent Schmidt number from a tracer experiment. Agricultural and Forest Meteorology, 2002, 111(4):299-307
  • 加载中
计量
  • 文章访问数:  3099
  • HTML全文浏览数:  2689
  • PDF下载数:  688
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-12-22
  • 刊出日期:  2016-03-18
杨志斌, 袁德奎. 基于Fluent城市大气污染物扩散数值模拟[J]. 环境工程学报, 2016, 10(3): 1365-1369. doi: 10.12030/j.cjee.20160358
引用本文: 杨志斌, 袁德奎. 基于Fluent城市大气污染物扩散数值模拟[J]. 环境工程学报, 2016, 10(3): 1365-1369. doi: 10.12030/j.cjee.20160358
Yang Zhibin, Yuan Dekui. Numerical simulation of atmospheric pollutants dispersion in urban based on Fluent[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1365-1369. doi: 10.12030/j.cjee.20160358
Citation: Yang Zhibin, Yuan Dekui. Numerical simulation of atmospheric pollutants dispersion in urban based on Fluent[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1365-1369. doi: 10.12030/j.cjee.20160358

基于Fluent城市大气污染物扩散数值模拟

  • 1. 天津大学力学系, 天津 300072
基金项目:

教育部新世纪优秀人才支持计划(NCET-12-0406)

摘要: 城市大气污染问题已经引起广泛的关注,其中对城市中大气污染物的迁移扩散过程还需进一步研究。为了探究城市复杂地形下大气污染物扩散预测的新模式,采用计算流体力学方法,建立了数值预测模型,构造出水平均匀的大气边界层模拟风场;进一步对建筑物影响下的大气污染物扩散过程进行了模拟,并与实验结果进行了对比。结果表明:数值模拟结果与实验结果基本吻合,计算流体力学方法可用于城市复杂地形下大气污染问题的研究工作;模拟结果与湍流模型的选取和湍流施密特数的设置有密切关系;采用SST k-ω湍流模型对此类问题较适宜,随着湍流施密特数的增大,扩散范围逐渐增大。

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回