稳定剂协同水泥固化/稳定化重金属污染土壤的工程特性

张志红, 陈家煜, 郭观林, 张琢, 王梅, 张朝. 稳定剂协同水泥固化/稳定化重金属污染土壤的工程特性[J]. 环境工程学报, 2017, 11(5): 3172-3178. doi: 10.12030/j.cjee.201512234
引用本文: 张志红, 陈家煜, 郭观林, 张琢, 王梅, 张朝. 稳定剂协同水泥固化/稳定化重金属污染土壤的工程特性[J]. 环境工程学报, 2017, 11(5): 3172-3178. doi: 10.12030/j.cjee.201512234
ZHANG Zhihong, CHEN Jiayu, GUO Guanlin, ZHANG Zhuo, WANG Mei, ZHANG Chao. Engineering characteristics of stabilized contaminated soil with heavy metals by cement and SR[J]. Chinese Journal of Environmental Engineering, 2017, 11(5): 3172-3178. doi: 10.12030/j.cjee.201512234
Citation: ZHANG Zhihong, CHEN Jiayu, GUO Guanlin, ZHANG Zhuo, WANG Mei, ZHANG Chao. Engineering characteristics of stabilized contaminated soil with heavy metals by cement and SR[J]. Chinese Journal of Environmental Engineering, 2017, 11(5): 3172-3178. doi: 10.12030/j.cjee.201512234

稳定剂协同水泥固化/稳定化重金属污染土壤的工程特性

  • 基金项目:

    国家高技术研究发展计划(863)项目(2013AA06A206)

    国家自然科学基金面上项目(51378035)

  • 中图分类号: X53

Engineering characteristics of stabilized contaminated soil with heavy metals by cement and SR

  • Fund Project:
  • 摘要: 采用稳定剂(SR)协同水泥(PC)固化/稳定化重金属污染土壤,以Pb、Zn浸出毒性和药剂吨处理成本为综合指标确定PC和SR的最优配比,并对固化土体进行无侧限抗压强度、不固结不排水三轴压缩实验和柔性壁渗透实验,探讨固化土体强度以及渗透特性。结果表明,最优配比为SR掺量 2.5%,PC掺量8%;最优配比下固化土体中重金属铅锌的浸出浓度分别降低97.5%和74.5%,均低于固体危险废物浸出标准值。其养护28 d无侧限抗压强度达到1 080 kPa,比未固化土体对应值高9.6倍;随着PC掺量增加,固化体的有效黏聚力及有效内摩擦角均不断增大,其中最优配比固化土体有效黏聚力达到216.9 kPa,有效内摩擦角为34.8°。加入稳定剂SR使固化体渗透系数增大,但随着PC掺量增加,渗透系数急剧降低。其中最优配比固化土体渗透系数相对未固化复合污染土体降低一个数量级至10-6cm·s-1,可有效增强土体的防渗阻隔能力,提高稳定化土壤的安全利用率。
  • 加载中
  • [1] 陈云敏,施建勇,朱伟,等. 环境岩土工程研究综述[J]. 土木工程学报,2012,45(4):165-182
    [2] 郝汉舟,陈同斌,靳孟贵,等. 重金属污染土壤稳定/固化修复技术研究进展[J]. 应用生态学报,2011,22(3):816-824
    [3] EVANKO C R,DZOMBAK D K. Remediation of metals-contaminated soils and groundwater[R]. Pittsburgh,PA:Carnegie Mellon University,1997
    [4] 谷庆宝,郭观林,周友亚,等. 污染场地修复技术的分类、应用与筛选方法探讨[J]. 环境科学研究,2008,21(2):197-202
    [5] 陈蕾,刘松玉,杜延军,等. 水泥固化重金属铅污染土的强度特性研究[J]. 岩土工程学报,2010,32(12):1898-1903
    [6] 杜延军,金飞,刘松玉,等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学,2011,32(1):116-124
    [7] KUMPIENE J,LAGERKVIST A,MAURICE C. Stabilization of As,Cr,Cu,Pb and Zn in soil using amendments:A review[J]. Waste Management,2008,28(1):215-225
    [8] MALONE P G,JONES L W,LARSON R J. Guide to the disposal of chemically stabilized and solidified waste (SW-872)[R]. Washington,DC:Office of Water and Waste Management,1980
    [9] HILLS C D,POLLARD S J T. The influence of interference effects on the mechanical,micro-structural and fixation characteristics of cement-solidified hazardous waste forms[J]. Journal of Hazard Materials,1997,52(2/3):171-191
    [10] 关亮,郭观林,汪群慧,等. 不同胶结材料对重金属污染土壤的固化效果[J]. 环境科学研究,2010,23(1):106-111
    [11] ZHAO Youcai,SONG Lijie,LI Cuojian. Chemical stabilization of MSW incinerator fly ashes[J]. Journal of Hazardous Materials,2002,95(1/2):47-63
    [12] ALPASLAN B,YUKSELEN M A. Remediation of lead contaminated soils by stabilization/solidification[J]. Water,Air,and Soil Pollution,2002,133(1/2/3/4):253-263
    [13] AL-TABBA A A,JOHNSON D. State of practice report-stabilization/solidification of contaminated materials with wet deep soil mixing[C]//The International Conference on Deep Mixing Best Practice and Recent Advances. Sweden, 2005:697-731
    [14] USEPA. Toxicity characteristic leaching procedure (TCLP):Method 1311[S]. Washington,DC:USEPA,1984
    [15] 中华人民共和国建设部. 土工试验方法标准:GB/T 50123-1999[S]. 北京:中国计划出版社,1999
    [16] 国家环境保护总局. 危险废物鉴别标准 浸出毒性鉴别:GB 5085.3-2007[S]. 北京:中国环境出版社,2007
    [17] KUCHAR D,FUKUTA T,ONYANGO M S,et al. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc,lead and copper resource recovery[J]. Chemosphere,2007,67(8):1518-1525
    [18] 王川,杨朝晖,曾光明,等. DTCR协同水泥固化/稳定化重金属污染底泥的研究[J]. 中国环境科学,2012,32(11):2060-2066
    [19] ZHANG Zhuo,GUO Guanlin,TENG Yanguo,et al. Screening and assessment of solidification/stabilization amendments suitable for soils of lead-acid battery contaminated site[J]. Journal of Hazardous Materials,2015,288:140-146
    [20] DU Yanjun,WEI Mingli,REDDY K R,et al. New phosphate-based binder for stabilization of soils contaminated with heavy metals:Leaching,strength and microstructure characterization[J]. Journal of Environmental Management,2014,146:179-188
    [21] 中华人民共和国交通运输部. 公路路基设计规范:JTG D30-2015[S]. 北京:人民交通出版社,2015
    [22] 白晓红,赵永强,韩鹏举,等. 污染环境对水泥土力学特性影响的试验研究[J]. 岩土工程学报,2007,29(8):1260-1263
    [23] 丛鑫,王森,张琢,等. 冻融对污染场地土壤重金属稳定化性能的影响[J]. 环境科学研究,2015,28(8):1240-1245
    [24] MALVIYA R,CHAUDHARY R. Leaching behavior and immobilization of heavy metals in solidified/stabilized products[J]. Journal of Hazardous Materials,2006,137(1):207-217 王川, 杨朝晖, 曾光明, 等. DTCR协同水泥固化/稳定化重金属污染底泥的研究. 中国环境科学, 2012, 32(11):2060-2066
    [25] 张志红,李红艳,师玉敏. 重金属Cu2+污染土渗透特性试验及微观结构分析[J]. 土木工程学报,2014,47(12):122-129
    [26] SHACKELFORD C D,SEVICK G W,EYKHOLT G R. Hydraulic conductivity of geosynthetic clay liners to tailings impoundment solutions[J]. Geotextiles and Geomembranes,2010,28(2):149-162
    [27] 张雷,王晓雪,叶勇,等. 水泥土抗渗性能室内试验研究[J]. 岩土力学,2006,27(S):1192-1196
    [28] ARIENZO M,CHRISTEN E W,JAYAWARDANE N S,et al. The relative effects of sodium and potassium on soil hydraulic conductivity and implications for winery wastewater management[J]. Geoderma,2012,173-174:303-310
  • 加载中
计量
  • 文章访问数:  1708
  • HTML全文浏览数:  1227
  • PDF下载数:  1210
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-03-18
  • 刊出日期:  2017-05-06
张志红, 陈家煜, 郭观林, 张琢, 王梅, 张朝. 稳定剂协同水泥固化/稳定化重金属污染土壤的工程特性[J]. 环境工程学报, 2017, 11(5): 3172-3178. doi: 10.12030/j.cjee.201512234
引用本文: 张志红, 陈家煜, 郭观林, 张琢, 王梅, 张朝. 稳定剂协同水泥固化/稳定化重金属污染土壤的工程特性[J]. 环境工程学报, 2017, 11(5): 3172-3178. doi: 10.12030/j.cjee.201512234
ZHANG Zhihong, CHEN Jiayu, GUO Guanlin, ZHANG Zhuo, WANG Mei, ZHANG Chao. Engineering characteristics of stabilized contaminated soil with heavy metals by cement and SR[J]. Chinese Journal of Environmental Engineering, 2017, 11(5): 3172-3178. doi: 10.12030/j.cjee.201512234
Citation: ZHANG Zhihong, CHEN Jiayu, GUO Guanlin, ZHANG Zhuo, WANG Mei, ZHANG Chao. Engineering characteristics of stabilized contaminated soil with heavy metals by cement and SR[J]. Chinese Journal of Environmental Engineering, 2017, 11(5): 3172-3178. doi: 10.12030/j.cjee.201512234

稳定剂协同水泥固化/稳定化重金属污染土壤的工程特性

  • 1.  北京工业大学城市与工程安全减灾省部共建教育部重点实验室, 北京 100124
  • 2.  中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012
基金项目:

国家高技术研究发展计划(863)项目(2013AA06A206)

国家自然科学基金面上项目(51378035)

摘要: 采用稳定剂(SR)协同水泥(PC)固化/稳定化重金属污染土壤,以Pb、Zn浸出毒性和药剂吨处理成本为综合指标确定PC和SR的最优配比,并对固化土体进行无侧限抗压强度、不固结不排水三轴压缩实验和柔性壁渗透实验,探讨固化土体强度以及渗透特性。结果表明,最优配比为SR掺量 2.5%,PC掺量8%;最优配比下固化土体中重金属铅锌的浸出浓度分别降低97.5%和74.5%,均低于固体危险废物浸出标准值。其养护28 d无侧限抗压强度达到1 080 kPa,比未固化土体对应值高9.6倍;随着PC掺量增加,固化体的有效黏聚力及有效内摩擦角均不断增大,其中最优配比固化土体有效黏聚力达到216.9 kPa,有效内摩擦角为34.8°。加入稳定剂SR使固化体渗透系数增大,但随着PC掺量增加,渗透系数急剧降低。其中最优配比固化土体渗透系数相对未固化复合污染土体降低一个数量级至10-6cm·s-1,可有效增强土体的防渗阻隔能力,提高稳定化土壤的安全利用率。

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回