污染土壤胶体释放特征及其对锌运移的作用

许端平, 崔芳菲, 李翰良, 郭春华, 李晓波. 污染土壤胶体释放特征及其对锌运移的作用[J]. 环境工程学报, 2015, 9(5): 2495-2502. doi: 10.12030/j.cjee.20150575
引用本文: 许端平, 崔芳菲, 李翰良, 郭春华, 李晓波. 污染土壤胶体释放特征及其对锌运移的作用[J]. 环境工程学报, 2015, 9(5): 2495-2502. doi: 10.12030/j.cjee.20150575
Xu Duanping, Cui Fangfei, Li Hanliang, Guo Chunhua, Li Xiaobo. Releasing characteristics of colloids from contaminated-soil and their effect on transportation of zinc[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2495-2502. doi: 10.12030/j.cjee.20150575
Citation: Xu Duanping, Cui Fangfei, Li Hanliang, Guo Chunhua, Li Xiaobo. Releasing characteristics of colloids from contaminated-soil and their effect on transportation of zinc[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2495-2502. doi: 10.12030/j.cjee.20150575

污染土壤胶体释放特征及其对锌运移的作用

  • 基金项目:
  • 中图分类号: X53

Releasing characteristics of colloids from contaminated-soil and their effect on transportation of zinc

  • Fund Project:
  • 摘要: 污染土壤样品采自辽宁省某炼锌企业周边农田。通过室内土柱淋溶实验,研究不同pH和离子强度下土壤胶体的释放特征以及对重金属Zn在土壤中运移的作用。结果表明,土壤胶体的释放均呈现先逐渐增强而后渐弱,并趋于稳定。pH和离子强度对土壤胶体的释放有明显的影响,弱酸(pH=6)条件最有利土壤中胶体的释放,其次是中性(pH=7)和碱性(pH=9)条件,在强酸(pH=4)条件下最弱。随离子强度增加,土壤中胶体的释放能力逐渐减弱。淋出液中胶体结合态Zn浓度均超过总Zn浓度的50%,且淋出液中的总Zn浓度与胶体的浓度相关性显著。经SPSS分析,pH=4、6、7和9时,该线性相关系数r分别为0.749、0.948、0.966和0.927,呈极显著相关关系。钙离子强度为0.001、0.01、0.1和0.5 mmol/L时,相关系数r分别为0.921、0.895、0.947和0.907,也呈现极显著相关关系。说明土壤地下水中Zn的运移主要受胶体释放的控制。
  • 加载中
  • [1] Vaxevanidou K., Papassiopi N., Paspaliaris I. Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques. Chemosphere, 2008, 70(8): 1329-1337
    [2] Arwidsson Z., Elgh-Dalgren K., Von Kronhelm T., et al. Remediation of heavy metal contaminated soil washing residues with amino polycarboxylic acids. Journal of Hazardous Materials, 2010, 173(1-3): 697-704
    [3] Appel C., Ma L. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. Journal of Environmental Quality, 2002, 31(2): 581-589
    [4] Lamb D. T, Ming Hui, Megharaj M., et al. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 2009, 171(1-3): 1150-1158
    [5] 刘廷良, 高松武次郎, 佐濑裕之. 日本城市土壤的重金属污染研究. 环境科学研究, 1996, 9(2): 47-51 Liu Tingliang, Takejiro T., Hiroyuki S. Study on soil pollution with heavy metals in some Japanese cities. Research of Environmental Sciences, 1996, 9(2): 47-51(in Chinese)
    [6] 李选统, 卢维盛, 李谦, 等. 土壤重金属污染的修复. 现代农业科技, 2011, (24): 295-297 Li Xuantong, Lu Weisheng, Li Qian, et al. The remediation of heavy metal pollution in soil. Modern Agricultural Sciences and Technology, 2011, (24): 295-297(in Chinese)
    [7] 和莉莉, 李冬梅, 吴钢. 我国城市土壤重金属污染研究现状和展望. 土壤通报, 2008, 39(5): 1210-1216 He Lili, Li Dongmei, Wu Gang. Heavy metal contamination of urban soils in China: State and prospect. Chinese Journal of Soil Science, 2008, 39(5): 1210-1216(in Chinese)
    [8] Baumann T., Fruhstorfer P., Klein T., et al. Colloid and heavy metal transport at landfill sites in direct contact with groundwater. Water Research, 2006, 40(14): 2776-2786
    [9] Utsunomiya S., Kersting A. B, Ewing R. C. Groundwater nanoparticles in the far-field at the Nevada Test Site: Mechanism for radionuclide transport. Environmental Science & Technology, 2009, 43(5): 1293- 1298
    [10] Möri A., Alexander W. R., Geckeis H., et al. The colloid and radionuclide retardation experiment at the Grimsel test site: Influence of bentonite colloids on radionuclide migration in a fractured rock. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 217(1-3): 33-47
    [11] Tang Xiangyu, Weisbrod N. Colloid-facilitated transport of lead in natural discrete fractures. Environmental Pollution, 2009, 157(8-9): 2266-2274
    [12] Ryan J. N., Elimelech M. Colloid mobilization and transport in groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 107: 1-56
    [13] Flury M., Qiu Hanxue. Modeling colloid-facilitated contaminant transport in the vadose zone. Vadose Zone Journal, 2008, 7(2): 682-697
    [14] Corapcioglu M. Y., Choi H. Modeling colloid transport in unsaturated porous media and validation with laboratory column data. Water Resources Research, 1996, 32(12): 3437-3449
    [15] Corapcioglu M. Y., Jiang Shiyan. Colloid-facilitated groundwater contaminant transport. Water Resources Research, 1993, 29(7): 2215-2226
    [16] Gao Bin, Cao Xinde, Dong Yan, et al. Colloid deposition and release in soils and their association with heavy metals. Critical Reviews in Environmental Science and Technology, 2011, 41(4): 336-372
    [17] Kretzschmar R., Schafer T. Metal retention and transport on colloidal particles in the environment. Elements, 2005, 1(4): 205-210
    [18] Torkzaban S., Bradford S. A., Van Genchten M. T., et al. Colloid transport in unsaturated porous media: The role of water content and ionic strength on particle straining. Journal of Contaminant Hydrology, 2008, 96(1-4): 113-127.
    [19] Yin Xianqiang, Gao Bin, Ma L. Q, et al. Colloid-facilitated Pb transport in two shooting-range soils in Florida. Journal of Hazardous Materials, 2010, 177(1-3): 620-625
    [20] Denaix L., Semlali R. M., Douay F. Dissolved and colloidal transport of Cd, Pb, and Zn in a silt loam soil affected by atmospheric industrial deposition. Environmental Pollution, 2001, 114(1): 29-38
    [21] Crançon P., Pili E., Charlet L. Uranium facilitated transport by water-dispersible colloids in field and soil columns. Science of The Total Environment, 2010, 408(9): 2118-2128
    [22] 孙慧敏, 殷宪强, 王益权. pH对粘土矿物胶体在饱和多孔介质中运移的影响. 环境科学学报, 2012, 32(2): 419-424 Sun Huimin, Yin Xianqiang, Wang Yiquan. The effect of pH on the transport of clay mineral colloid in saturated porous media. Acta Scientiae Circumstantiae, 2012, 32(2): 419-424(in Chinese)
    [23] 吕雪艳, 姚遥, 孙媛媛, 等. 离子强度及pH对不同类型土壤中胶体释放的影响. 农业环境科学学报, 2014, 33(7): 1358-1365 Lü Xueyan, Yao Yao, Sun Yuanyuan, et al. Effects of ionic strength and pH on colloid release from different soils. Journal of Agro-Environment Science, 2014, 33(7): 1358-1365(in Chinese)
    [24] 田玉红, 张恩仁, 霍杰. 天然水体中胶体粒子与痕量金属相互作用研究. 广西工学院学报, 2000, 11(1): 86-89 Tian Yuhong, Zhang Enren, Huo Jie. A summarization of the interaction of colloidal particles and trace metal in natural water. Journal of Guangxi Institute of Technology, 2000, 11(1): 86-89(in Chinese)
    [25] Sen T. K., Khilar K. C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Advances in Colloid and Interface Science, 2006, 119(2-3): 71-96
    [26] 商书波. 包气带中的土壤可移动胶体及对重金属迁移影响的研究. 吉林: 吉林大学博士学位论文, 2008: 74-75 Shang Shubao. Study on the impact of soil colloid on heavy metals migration in vadose zone. Jilin: Doctor Dissertation of Jilin University, 2008(in Chinese)
    [27] 贾晓玉, 李海明, 王博, 等. 不同酸碱条件下胶体迁移对含水介质渗透性的影响. 环境科学与技术, 2009, 32(5): 45-47 Jia Xiaoyu, Li Haiming, Wang Bo, et al. Effect of colloid transport on porous medium permeability in different acidic and basic environment. Environmental Science & Technology, 2009, 32(5): 45-47(in Chinese)
    [28] 刘庆玲, 徐绍辉, 刘建立. 离子强度和pH对高岭石胶体运移影响的实验研究. 土壤学报, 2007, 44(3): 425-429 Liu Qingling, Xu Shaohui, Liu Jianli. Effects of ionic-strength and pH on kaolinite transport in saturated porous media. Acta Pedologica Sinica, 2007, 44(3): 425-429(in Chinese)
    [29] 王代长, 孙志成, 蒋新, 等. 酸性条件下可变电荷土壤对锌的吸附动力学特征. 环境化学, 2010, 29(3): 397-401 Wang Daichang, Sun Zhicheng, Jiang Xin, et al. Kinetics of Zn adsorption by selected variable charge soils under acidic conditions. Environmental Chemistry, 2010, 29(3): 397-401(in Chinese)
    [30] 张淼, 李亚青, 王敏新. 黄土体对重金属(Cd, Pb, Zn, Cu)吸附试验研究. 西北水资源与水工程, 1996, 7(2): 35-40 Zhang Miao, Li Yaqing, Wang Minxin. Adsorption experiments of heavy metals (Cd, Pb, Zn, Cu) on the loess soil. Water Resources & Water Engineering, 1996, 7(2): 35-40(in Chinese)
    [31] 陆文龙, 潘洁, 薛家骅. 土壤锌吸附动力学. 华北农学报, 1996, 11(1): 81-86 Lu Wenlong, Pan Jie., Xue Jiahua. H. A study on the kinetics of zinc sorption and desorption in soil. Acta Agriculture Boreali-Sinica, 1996, 11(1): 81-86(in Chinese)
    [32] Grolimund D., Borkovec M. Long-term release kinetics of colloidal particles from natural porous media. Environmental Science & Technology, 1999, 33(22): 4054-4060
    [33] Klitzke S., Lang F., Kaupenjohann M. Increasing pH releases colloidal lead in a highly contaminated forest soil. European Journal of Soil Science, 2008, 59(2): 265-273
    [34] 吕俊佳, 许端平, 李发生. 不同环境因子对黑土胶体在饱和多孔介质中运移特性的影响. 环境科学研究, 2012, 25(8): 875-881 Lü Junjia, Xu Duanping, Li Fasheng. Effects of different environmental factors on the transportation of black soil colloid in saturated porous media. Research of Environmental Sciences, 2012, 25(8): 875-881(in Chinese)
    [35] Saiers J. E., Hornberger G. M. The influence of ionic strength on the facilitated transport of cesium by kaolinite colloids. Water Resources Research, 1999, 35(6): 1713-1727
    [36] 邹献中, 徐建民, 赵安珍, 等. 离子强度和pH对可变电荷土壤与铜离子相互作用的影响. 土壤学报, 2003, 40(6): 845-851 Zou Xianzhong, Xu Jianmin, Zhao Anzhen, et al. Effects of ionic strength and pH on interaction between Cu2+ and variable charge soils. Acta Pedologica Sinica, 2003, 40(6): 845-851(in Chinese)
    [37] Amellal N., Portal J. -M., Berthelin J. Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of a contaminated soil. Applied Geochemistry, 2001, 16(14): 1611-1619
  • 加载中
计量
  • 文章访问数:  1879
  • HTML全文浏览数:  1302
  • PDF下载数:  995
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-01-08
  • 刊出日期:  2015-05-11
许端平, 崔芳菲, 李翰良, 郭春华, 李晓波. 污染土壤胶体释放特征及其对锌运移的作用[J]. 环境工程学报, 2015, 9(5): 2495-2502. doi: 10.12030/j.cjee.20150575
引用本文: 许端平, 崔芳菲, 李翰良, 郭春华, 李晓波. 污染土壤胶体释放特征及其对锌运移的作用[J]. 环境工程学报, 2015, 9(5): 2495-2502. doi: 10.12030/j.cjee.20150575
Xu Duanping, Cui Fangfei, Li Hanliang, Guo Chunhua, Li Xiaobo. Releasing characteristics of colloids from contaminated-soil and their effect on transportation of zinc[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2495-2502. doi: 10.12030/j.cjee.20150575
Citation: Xu Duanping, Cui Fangfei, Li Hanliang, Guo Chunhua, Li Xiaobo. Releasing characteristics of colloids from contaminated-soil and their effect on transportation of zinc[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2495-2502. doi: 10.12030/j.cjee.20150575

污染土壤胶体释放特征及其对锌运移的作用

  • 1. 辽宁工程技术大学环境科学与工程学院, 阜新 123000
基金项目:

摘要: 污染土壤样品采自辽宁省某炼锌企业周边农田。通过室内土柱淋溶实验,研究不同pH和离子强度下土壤胶体的释放特征以及对重金属Zn在土壤中运移的作用。结果表明,土壤胶体的释放均呈现先逐渐增强而后渐弱,并趋于稳定。pH和离子强度对土壤胶体的释放有明显的影响,弱酸(pH=6)条件最有利土壤中胶体的释放,其次是中性(pH=7)和碱性(pH=9)条件,在强酸(pH=4)条件下最弱。随离子强度增加,土壤中胶体的释放能力逐渐减弱。淋出液中胶体结合态Zn浓度均超过总Zn浓度的50%,且淋出液中的总Zn浓度与胶体的浓度相关性显著。经SPSS分析,pH=4、6、7和9时,该线性相关系数r分别为0.749、0.948、0.966和0.927,呈极显著相关关系。钙离子强度为0.001、0.01、0.1和0.5 mmol/L时,相关系数r分别为0.921、0.895、0.947和0.907,也呈现极显著相关关系。说明土壤地下水中Zn的运移主要受胶体释放的控制。

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回