SAPS处理酸性矿山废水的模拟应用研究

石太宏, 杨娣, 冯玉香, 宋文哲, 叶进鹏, 周毅, 仇荣亮. SAPS处理酸性矿山废水的模拟应用研究[J]. 环境工程学报, 2015, 9(5): 2277-2283. doi: 10.12030/j.cjee.20150541
引用本文: 石太宏, 杨娣, 冯玉香, 宋文哲, 叶进鹏, 周毅, 仇荣亮. SAPS处理酸性矿山废水的模拟应用研究[J]. 环境工程学报, 2015, 9(5): 2277-2283. doi: 10.12030/j.cjee.20150541
Shi Taihong, Yang Di, Feng Yuxiang, Song Wenzhe, Ye Jinpeng, Zhou Yi, Qiu Rongliang. Simulative applied study on treatment of acid mine drainage by successive alkalinity producing systems[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2277-2283. doi: 10.12030/j.cjee.20150541
Citation: Shi Taihong, Yang Di, Feng Yuxiang, Song Wenzhe, Ye Jinpeng, Zhou Yi, Qiu Rongliang. Simulative applied study on treatment of acid mine drainage by successive alkalinity producing systems[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2277-2283. doi: 10.12030/j.cjee.20150541

SAPS处理酸性矿山废水的模拟应用研究

  • 基金项目:

    广东省环境污染控制与修复技术重点实验室资助项目

  • 中图分类号: X703

Simulative applied study on treatment of acid mine drainage by successive alkalinity producing systems

  • Fund Project:
  • 摘要: 根据硫酸盐还原菌(SRB)的生物矿化原理设计了一套连续碱度产生系统(SAPS)反应器,以市政污水处理厂的活性污泥为SRB提供源,南方常见的香芋柄为有机物碳源,选用石灰石为反应器中碱度层填充物,进行实验室模拟SAPS处理酸性矿山废水(AMD)的应用研究,实验结果表明,SAPS处理酸性矿山废水的方法是具有技术可行的:SRB利用有机碳源生长代谢,产生碱度、还原SO42-和降解COD。最终废水pH从进水4.0左右上升到出水7.0左右;出水COD降低到约200 mg/L; SO42-还原为各种硫化物,其还原率约为61%;不同金属离子在有机层和碱度层发生反应产生沉淀,其中Fe2+、Cu2+和Zn2+的去除效率分别约为76%、78.5%和82%,而主要靠物理吸附作用的Mn2+去除率较低;初次模拟SAPS运行到56 d时,系统最终因有机碳源不足而各项指标不再改变。
  • 加载中
  • [1] 马思远, 李泽琴. 矿山酸性废水处理方法探讨. 矿冶, 2009, 18(4): 83-86 Ma Siyuan, Li Zeqin. Measures of deal with acid waste water in mine. Ming & Metallurgy, 2009, 18(4): 83-86 (in Chinese)
    [2] 马尧, 胡宝群, 孙占学. 矿山酸性废水治理的研究综述. 矿业工程, 2006, 4(3): 55-57 Ma Yao, Hu Baoqun, Sun Zhanxue. The summary of studies on the acid mine drainage treatment. Mining Engineering, 2006, 4(3): 55-57 (in Chinese)
    [3] 鞠海燕, 黄春文, 罗文海, 等. 金属矿山酸性废水危害及治理技术的现状与对策. 中国钨业, 2008, 23(2): 41-44 Ju Haiyan, Huan Chunwen, Luo Wenhai, et al. The damage and treatment techniques of metal mines acid wastewater. China Tungsten Industry, 2008, 23(2): 41-44 (in Chinese)
    [4] 卢志坚, 余新华, 黄权. 矿山废水对饮用水水质及人群肿瘤死亡的影响. 环境与健康杂志, 2004, 21(5): 303-304 Lu Zhijian, Yu Xinhua, Huan Quan. Effect of mining waste water on drinking water quality and tumor mortality of villagers. Journal of Environment and Health, 2004, 21(5): 303-304 (in Chinese)
    [5] Kepler D. A., McCleary E. C. Successive alkalinity-producing systems (SAPS) for the treatment of acidic mine drainage// Proceedings of the International Land Reclamation and Mine Drainage Conference and the 3rd International Conference on the Abatement of Acidic Drainage. Pittsburgh, PA. 1994: 195-204
    [6] Johnson D. B., Hallberg K. B. Acid mine drainage remediation options: A review. Science of the Total Environment, 2005, 338(1-2): 3-14
    [7] Nairn R. W., Mercer M. N. Alkalinity generation and metals retention in a successive alkalinity producing system. Mine Water and the Environment, 2000, 19(2): 124-133
    [8] Trumm D., Watts M. Results of small-scale passive system trials to treat acid mine drainage, West Coast Region, South Island, New Zealand. New Zealand Journal of Geology and Geophysics, 2010, 53(2-3): 227-237
    [9] 肖利萍, 刘文颖, 褚玉芬. 被动处理技术SAPS处理酸性矿山废水实验研究. 水资源与水工程学报, 2008, 19(2): 12-15 Xiao Liping, Liu Wenpei, Chu Yufen. Experimental research using passive treatment technology SAPS to treat acidic mine waste water. Journal of Water Resources & Water Engineering, 2008, 19(2): 12-15 (in Chinese)
    [10] 刘文颖, 肖利萍, 梁冰. 矿山酸性废水治理的研究及SAPS技术展望. 矿业研究与开发, 2008, 28(1): 71-73 Liu Wenying, Xiao Liping, Liang Bing. Study on the treatment of acid mine drainage by SAPS and development prospect of SAPS. Mining Research & Development, 2008, 28(1): 71-73 (in Chinese)
    [11] Cheong Y. W., Das B., Roy A., et al. Performance of a SAPS-Based Chemo-Bioreactor Treating Acid Mine Drainage Using Low-DOC Spent Mushroom Compost, and Limestone as Substrate. Mine Water and the Environment, 2010, 29(3): 217-224
    [12] Akcil A., Koldas S.Acid Mine Drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production, 2006, 14(12-13): 1139-1145
    [13] 国家环境保护总局. 水质硫酸盐的测定铬酸钡分光光度法(试行). 北京: 中国环境科学出版社, 2007
    [14] 王建梅, 旷英姿. 无机化学(第2版). 北京: 化学工业出版社, 2009
    [15] 孙桂林. 废水生物脱硫机理及技术. 北京: 化学工业出版社, 2004
    [16] Ji S. W., Kim S. J. Lab-scale study on the application of in-adit-sulfate-reducing system for AMD control. Journal of Hazardous Materials, 2008, 160(2-3): 441-447
    [17] Matthies R., Aplin A. C., Jarvis A. P. Performance of a passive treatment system for net-acidic coal mine drainage over five years of operation. Science of the Total Environment, 2010, 408(20): 4877-4885
    [18] 周向红, 刘杨, 藏嘉澍. 关于水热反应产氢的研究. 科技致富向导, 2010, (6): 168 -170 Zhou Xianghong, Liu Yang, Zang Jiashu. On the hydrothermal reaction of hydrogen production. Guide of Sic-Magazine, 2010, (6): 168-170 (in Chinese)
    [19] 苏冰琴, 李亚新. 以污泥酸性发酵产物为碳源生物处理模拟酸性矿山废水的工艺特性. 化工学报, 2010, 61(1): 208-215 Su Bingqin, Li Yaxin. Technological characteristics of biological treatment of acid mine drainage with acidic fermentation production of sewage treatment plant sludge as carbon source. CIESC Journal, 2010, 61(1): 208-215 (in Chinese)
    [20] Kalin M., Caetano Chaves W. L. Acid reduction using microbiology: Treating AMD effluent emerging from an abandoned mine portal. Hydrometallurgy, 2003, 71(1-2): 217-225
    [21] 杜平, 刘书贤, 谭广柱, 等. SRB法处理酸性矿上废水的实验研究. 水资源与水工程学报, 2012, 23(3): 22-29 Du Ping, Liu Shuxian, Tan Guangzhu. Research on the treatment of acid mine. Journal of Water Resources & Water Engineering, 2012, 23(3): 22-29 (in Chinese)
    [22] 苏平. 硫化物沉淀法及其对金属硫化物去除率的探讨. 中国有色冶金, 2009, (4): 6-10, 22 Su Ping. An exploration into the sulphide precipitation method and its effect on metal sulphide removal. China Nonferrous Metallurgy, 2009, (4): 6-10, 22 (in Chinese)
    [23] Singh R., Kumar A., Kirrolia A., et al. Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresource Technology, 2011, 102(2): 677-682
    [24] Hallberg K. B., Johnson D. B. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors. Science of the Total Environment, 2005, 338(1-2): 115-124
    [25] 董慧, 张瑞雪, 吴攀, 等. 利用硫酸盐还原菌去除矿山废水中污染物试验研究. 水处理技术, 2012, 38(5): 31-35 Dong Hui, Zhang Ruixue, Wu Pan, et al. Experiment study on treatment of acid mine drainage contaminant by sulfate reducing bacteria. Technology of Water Treatment, 2012, 38(5): 31-35 (in Chinese)
    [26] 万由令, 李龙海. 玉米芯为碳源实现酸性矿山废水生物处理. 工业安全与环保, 2004, 30(5): 11-15 Wan Youling, Li Longhai. Biological treatment for acid mine drainage by using corncob as carbon source. Industrial Safety and Environmental Protection, 2004, 30(5): 11-15 (in Chinese)
    [27] 余水静, 彭艳平. 硫酸盐还原菌处理矿山酸性废水的研究进展. 现代矿业, 2009, (11): 63-66 Yu Shuijing, Peng Yanping. Advances in disposal of acid mine drainage by sulfate reducing bacteria. Morden Mining, 2009, (11): 63-66(in Chinese)
  • 加载中
计量
  • 文章访问数:  4433
  • HTML全文浏览数:  3122
  • PDF下载数:  693
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-05-20
  • 刊出日期:  2015-05-11
石太宏, 杨娣, 冯玉香, 宋文哲, 叶进鹏, 周毅, 仇荣亮. SAPS处理酸性矿山废水的模拟应用研究[J]. 环境工程学报, 2015, 9(5): 2277-2283. doi: 10.12030/j.cjee.20150541
引用本文: 石太宏, 杨娣, 冯玉香, 宋文哲, 叶进鹏, 周毅, 仇荣亮. SAPS处理酸性矿山废水的模拟应用研究[J]. 环境工程学报, 2015, 9(5): 2277-2283. doi: 10.12030/j.cjee.20150541
Shi Taihong, Yang Di, Feng Yuxiang, Song Wenzhe, Ye Jinpeng, Zhou Yi, Qiu Rongliang. Simulative applied study on treatment of acid mine drainage by successive alkalinity producing systems[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2277-2283. doi: 10.12030/j.cjee.20150541
Citation: Shi Taihong, Yang Di, Feng Yuxiang, Song Wenzhe, Ye Jinpeng, Zhou Yi, Qiu Rongliang. Simulative applied study on treatment of acid mine drainage by successive alkalinity producing systems[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2277-2283. doi: 10.12030/j.cjee.20150541

SAPS处理酸性矿山废水的模拟应用研究

  • 1.  中山大学环境科学与工程学院, 广州 510275
基金项目:

广东省环境污染控制与修复技术重点实验室资助项目

摘要: 根据硫酸盐还原菌(SRB)的生物矿化原理设计了一套连续碱度产生系统(SAPS)反应器,以市政污水处理厂的活性污泥为SRB提供源,南方常见的香芋柄为有机物碳源,选用石灰石为反应器中碱度层填充物,进行实验室模拟SAPS处理酸性矿山废水(AMD)的应用研究,实验结果表明,SAPS处理酸性矿山废水的方法是具有技术可行的:SRB利用有机碳源生长代谢,产生碱度、还原SO42-和降解COD。最终废水pH从进水4.0左右上升到出水7.0左右;出水COD降低到约200 mg/L; SO42-还原为各种硫化物,其还原率约为61%;不同金属离子在有机层和碱度层发生反应产生沉淀,其中Fe2+、Cu2+和Zn2+的去除效率分别约为76%、78.5%和82%,而主要靠物理吸附作用的Mn2+去除率较低;初次模拟SAPS运行到56 d时,系统最终因有机碳源不足而各项指标不再改变。

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回