Cupriavidus necator (DSM428)利用地沟油合成PHA的条件优化

任连海, 刘慧, 张明露. Cupriavidus necator (DSM428)利用地沟油合成PHA的条件优化[J]. 环境工程学报, 2016, 10(6): 3166-3172. doi: 10.12030/j.cjee.201501051
引用本文: 任连海, 刘慧, 张明露. Cupriavidus necator (DSM428)利用地沟油合成PHA的条件优化[J]. 环境工程学报, 2016, 10(6): 3166-3172. doi: 10.12030/j.cjee.201501051
Ren Lianhai, Liu Hui, Zhang Minglu. Optimizing fermentation conditions for polyhydroxyalkanoates synthesis from waste oil by Cupriavidus necator (DSM428)[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3166-3172. doi: 10.12030/j.cjee.201501051
Citation: Ren Lianhai, Liu Hui, Zhang Minglu. Optimizing fermentation conditions for polyhydroxyalkanoates synthesis from waste oil by Cupriavidus necator (DSM428)[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3166-3172. doi: 10.12030/j.cjee.201501051

Cupriavidus necator (DSM428)利用地沟油合成PHA的条件优化

  • 基金项目:

    国家科技支撑计划课题(2012BAC25B01,2014BAC27B01-03)

    国家自然科学基金面上项目(51578008)

  • 中图分类号: X705

Optimizing fermentation conditions for polyhydroxyalkanoates synthesis from waste oil by Cupriavidus necator (DSM428)

  • Fund Project:
  • 摘要: 聚羟基脂肪酸酯(PHA)是一种在细胞体内合成的天然高分子生物材料,由于其具有可降解性,因此可以代替传统塑料,已被广泛应用于生产生活中。选用Cupriavidus necator (DSM428)作为实验菌株,利用价格相对低廉的地沟油作为细菌生长的碳源,考察了pH、温度、培养时间、C/N(质量比)对PHA产生量的影响,同时对其结构及热学性质进行分析。通过实验发现,PHA最佳合成条件是pH值为8,温度为30℃,培养时间为84 h,C/N为20:1.5,PHA最大产量范围为7~9 g/L。
  • 加载中
  • [1] Chen Guoqiang, Wu Qiong. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 2005, 26(33): 6565-6578
    [2] Qu Xiaohua, Wu Qiong, Zhang Kunyang, et al. In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: Biodegradation and tissue reactions. Biomaterials, 2006, 27(19): 3540-3548
    [3] Qu Xianghua, Wu Qiong, Liang Juan, et al. Effect of 3-hydroxyhexanoate content in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on in vitro growth and differentiation of smooth muscle cells. Biomaterials, 2006, 27(15): 2944-2950
    [4] 黄玉杰, 王加宁, 邱维忠, 等. 聚羟基脂肪酸酯的生物合成与废弃物的资源化利用. 安徽农业科学, 2012, 40(34): 16751-16755 Huang Yujie, Wang Jianing, Qu Weizhong, et al. Utilization of waste raw materials for the polyhydroxyalkanoates bioproduction. Journal of Anhui Agricultural Sciences, 2012, 40(34): 16751-16755(in Chinese)
    [5] 王武, 李礼尧, 陈玲, 等. 羟基脂肪酸聚酯制备与热性质研究. 生物工程学报, 1998, 14(3): 303-308 Wang Wu, Li Liyao, Chen Ling, et al. Polyhydroxyalkanoates preparation and thermo properties. Chinese Journal of Biotechnology, 1998, 14(3): 303-308(in Chinese)
    [6] Kessler B., Wilholt B. Poly(3-hydroxyalkanoates)//Flickinger M. C., Drew S. W., eds. Encyclopedia of Bioprocess Technology-Fermentation, Biocatalysis and Bioseparation. New York: Wiley, 1999: 2024-2040
    [7] 孙万东, 张佑红, 耿安利,等. 煎炸废油生产聚羟基丁酸酯(PHB). 广州化工, 2013, 41(12): 114-116 Sun Wandong, Zhang Youhong, Geng Anli, et al. Polyhydroxybutyrate production from waste frying oil. Guangzhou Chemical Industry, 2013, 41(12): 114-116(in Chinese)
    [8] Koller M., Bona R., Hermann C., et al. Biotechnological production of poly(3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substrates. Biocatalysis and Biotransformation, 2005, 23(5): 329-337
    [9] 任连海. 我国餐厨废油的产生现状、危害及资源化技术. 北京工商大学学报(自然科学版), 2011, 29(6): 11-14 Ren Lianhai. Study on producing actuality, hazardous and the recycle of resources technologies of waste oil in china. Journal of Beijing Technology and Business University (Natural Science Edition), 2011, 29(6): 11-14(in Chinese)
    [10] Choi J. I., Lee S. Y. Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Engineering, 1997,17(6): 335-342
    [11] Steinbüchel A., Valentin H. E. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiology Letters, 1995, 128(3): 219-228
    [12] 严群, 李寅, 陈坚, 等. 微生物合成中链聚羟基烷酸酯研究进展. 生物工程学报, 2001, 17(5): 485-490 Yan Qun, Li Yan, Chen Jian, et al. Progress on the biosynthesis of medium-chain-length polyhydroxyalkanoates by microorganisms. Chinese Journal of Biotechnology, 2001, 17(5): 485-490 (in Chinese)
    [13] Obruca S., Marova I., Snajdar O., et al. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnology Letters, 2010, 32(12): 1925-1932
    [14] Obruca S., Benesova P., Oborna J., et al. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnology Letters, 2014, 36(4): 775-781
    [15] Obruca S., Marova I., Stankova M., et al. Effect of ethanol and hydrogen peroxide on poly(3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16. World Journal of Microbiology and Biotechnology, 2010, 26(7): 1261-1267
    [16] Ng K. S., Ooi W. Y., Goh L. K., et al. Evaluation of jatropha oil to produce poly(3-hydroxybutyrate) by Cupriavidus necator H16. Polymer Degradation and Stability, 2010, 95(8): 1365-1369
    [17] Verlinden R. A. J., Hill D. J., Kenward M. A., et al. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express, 2011, 1(11): 1-8
    [18] 秦清, 张艳萍. 3种短链脂肪酸对活性污泥储存PHA的影响. 环境工程学报, 2014, 8(7): 2859-2864 Qin Qing, Zhang Yanping. Impact of three short-chain fatty acids on PHA storage by activated sludge. Chinese Journal of Environmental Engineering, 2014, 8(7): 2859-2864(in Chinese)
    [19] 张运海. 利用混合菌群合成聚羟基烷酸酯工艺条件优化. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2010 Zhang Yunhai. Process optimiza for polyhydroxyalkanoates production using mixed bacterial cultures. Harbin: Master Dissertation of Harbin Institute of Technology, 2010(in Chinese)
    [20] 何竹青. PHA高产菌株的诱变选育及培养条件的研究. 西安: 西北大学硕士学位论文, 2009 He Zhuqing. Study on mutation breeding and optimize fermentation conditions for poly-hydroxybutyrate acid (PHA) overproductive strains. Xi'an: Master Dissertation of Northwest University, 2009(in Chinese)
    [21] Wang J., Yu J. Kinetic analysis on formation of poly(3-hydroxybutyrate) from acetic acid by Ralstonia eutropha under chemically defined conditions. Journal of Industrial Microbiology and Biotechnology, 2001, 26(3): 121-126
    [22] Wang Y. J., Hua F. L., Tsang Y. F., et al. Synthesis of PHAs from waster under various C:N ratios. Bioresource Technology, 2007, 98(8): 1690-1693
  • 加载中
计量
  • 文章访问数:  2217
  • HTML全文浏览数:  1615
  • PDF下载数:  855
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-02-16
  • 刊出日期:  2016-06-03
任连海, 刘慧, 张明露. Cupriavidus necator (DSM428)利用地沟油合成PHA的条件优化[J]. 环境工程学报, 2016, 10(6): 3166-3172. doi: 10.12030/j.cjee.201501051
引用本文: 任连海, 刘慧, 张明露. Cupriavidus necator (DSM428)利用地沟油合成PHA的条件优化[J]. 环境工程学报, 2016, 10(6): 3166-3172. doi: 10.12030/j.cjee.201501051
Ren Lianhai, Liu Hui, Zhang Minglu. Optimizing fermentation conditions for polyhydroxyalkanoates synthesis from waste oil by Cupriavidus necator (DSM428)[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3166-3172. doi: 10.12030/j.cjee.201501051
Citation: Ren Lianhai, Liu Hui, Zhang Minglu. Optimizing fermentation conditions for polyhydroxyalkanoates synthesis from waste oil by Cupriavidus necator (DSM428)[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3166-3172. doi: 10.12030/j.cjee.201501051

Cupriavidus necator (DSM428)利用地沟油合成PHA的条件优化

  • 1. 北京工商大学食品学院, 北京 100048
基金项目:

国家科技支撑计划课题(2012BAC25B01,2014BAC27B01-03)

国家自然科学基金面上项目(51578008)

摘要: 聚羟基脂肪酸酯(PHA)是一种在细胞体内合成的天然高分子生物材料,由于其具有可降解性,因此可以代替传统塑料,已被广泛应用于生产生活中。选用Cupriavidus necator (DSM428)作为实验菌株,利用价格相对低廉的地沟油作为细菌生长的碳源,考察了pH、温度、培养时间、C/N(质量比)对PHA产生量的影响,同时对其结构及热学性质进行分析。通过实验发现,PHA最佳合成条件是pH值为8,温度为30℃,培养时间为84 h,C/N为20:1.5,PHA最大产量范围为7~9 g/L。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回