响应面法优化光催化/臭氧氧化深度处理炼油废水

倪可, 王利平, 肖春宝, 李新颖. 响应面法优化光催化/臭氧氧化深度处理炼油废水[J]. 环境工程学报, 2014, 8(12): 5349-5355.
引用本文: 倪可, 王利平, 肖春宝, 李新颖. 响应面法优化光催化/臭氧氧化深度处理炼油废水[J]. 环境工程学报, 2014, 8(12): 5349-5355.
Ni Ke, Wang Liping, Xiao Chunbao, Li Xinying. Optimization of photocatalytic/ozonation treatment process for oil-refinery wastewater with response surface methodology[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5349-5355.
Citation: Ni Ke, Wang Liping, Xiao Chunbao, Li Xinying. Optimization of photocatalytic/ozonation treatment process for oil-refinery wastewater with response surface methodology[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5349-5355.

响应面法优化光催化/臭氧氧化深度处理炼油废水

  • 基金项目:

    常州市社会发展科技计划项目(CS20090008)

    常州科教城科研基金(K2012307)

    常州市产学研合作项目(CF20140011)

  • 中图分类号: X703

Optimization of photocatalytic/ozonation treatment process for oil-refinery wastewater with response surface methodology

  • Fund Project:
  • 摘要: 利用响应面方法(RSM)对光催化/臭氧氧化深度处理炼油废水工艺进行优化,考察了臭氧通量、光催化剂投加量、初始pH和反应时间对于处理效果的影响,提出采用该工艺的数学模型及优化后的工艺参数。结果表明,各影响因子对COD去除率影响顺序为反应时间>光催化剂投加量>初始pH>臭氧通量,方程的F值为11.54,相关系数为0.9537,调整相关系数为0.915,说明数学模型可以较好地模拟真实的反应曲面。优化得到最佳的工艺参数:臭氧通量1.05 L/min、光催化剂投加量0.33 g/L、初始pH 7.51、反应时间96.95 min,在该条件下,对COD去除率为97.88%,与预测值99.49%接近。采用95%处理水和5%新鲜水混合,水质达到了循环冷凝水的补充水水质指标要求。
  • 加载中
  • [1] 苟钰娴,杨凤林,石利军.一体式A/O摇动床工艺处理石化废水.环境工程学报,2007,1(2):34-38 Ge Y. X., Yang F. L., Shi L. J.Treatment of petroch-emical wastewater using integrative A/O swimbed process. Chinese Journal of Environmental Engineering,2007,1(2):34-38(in Chinese)
    [2] Zhu X. B.,Tian J. P., Liu R.,et al. Optimization of F-enton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology. Separation and Purification Technology,2011,81(3):444-450
    [3] 张冬梅,刘蕾,褚衍洋.电-Fenton氧化降解2,4-二氯酚.环境科学研究,2012,25(9):1041-1046 Zhang D. M., Liu L., Zhu Y. Y. Degradation of 2,4-dichlorophenol by electro-Fenton oxidation process. Research of Environmental Sciences,2012,25(9):1041-1046(in Chinese)
    [4] Arnan I., Dona R. J. M., Rendon E.T., et al. TiO2 a-ctivation by using activated carbon as a support:Part Ⅱ. Applied Catalysis B:Environmental,2003,44(2):153-160
    [5] 钱伯章,朱建芳.炼油废水处理技术新进展.化工环保,2009,29(2):99-104 Qian B. Z., Zhu J. F. Development of technologies for petrochemical wastewater treatment. Environmental Protection of Chemical Industry,2009,29(2):99-104(in Chinese)
    [6] 蔡少卿,戴启洲,王佳裕.非均相催化臭氧处理高浓度制药废水的研究.环境科学学报, 2011,31(7):1440-1449 Cai S. Q., Dai Q. Z., Wang J. Y. Heterogeneous catal-ytic ozone oxidation for pharmaceutical wastewater treatment. Acta Scientiae Circumstantiae,2011,31(7):1440-1449(in Chinese)
    [7] Alaton I. A., Tureli G., Hanci T. O. Treatment of az-odye production wastewaters using photo-Fenton-like a-dvanced oxidation processes: Optimization by response surface methodology. Journal of Photochemistry and Photobiology A: Chemistry,2009,202(2-3):142-153
    [8] Zhong K., Wang Q. Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology. Carbohydrate Polymers,2010,80(1):19-25
    [9] Jain M., Garg V. K., Kadirvelu K. Investigation of Cr(VI) adsorption onto chemically treated Helianthus annuus: Optimization using response surface methodology.Bioresource Technology,2011,102(2):600-605
    [10] 崔旭峰,杜尔登.响应面方法优化光催化降解抗生素类污染物过程研究.环境科学与管理,2010,35(7):70-74,99 Cui X. F., Du E. D. Optimization of photocatalytic degradation of antibiotic pollutant by response surface method. Environmental Science and Management,2010,102(2):600-605(in Chinese)
    [11] Wang J. P., Chen Y. Z., Wang Y., et al. Optimization of the coagulation flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology. Water Research,2011, 45(17):5633-5640
    [12] Hasa H. A., Abdullah S. R., Kamarudin S. K, et al.Response surface methodology for optimization of simultaneous COD, NH4+-N and Mn2+ removal from drinking water by biological aerated filter.Desalination,2011,275(1-3):50-61
    [13] Bhatti M. S., Reddy A. S., Thukral A. K. Electroco-agulation removal of Cr(VI) from simulated wastewater using response surface methodology. Journal of Hazardous Materials,2009,172(2-3):839-846
    [14] 胡中华,王晓静.一种活性炭负载二氧化钛光催化剂的制备方法:中国,CN101244383A,2008-08-20
    [15] 刘守新,陈曦.TiO2/活性炭负载型光催化剂的溶胶-凝胶法合成及表征.催化学报,2008,29(1):19-24 Liu S.X., Chen X. Sol-gel preparation and characteri-zation of activated carbon supported TiO2 photocatalyst.Chinese Journal of Catalysis,2008,29(1):19-24(in Chinese)
    [16] Neseli S., Yaldiz S., Turkes E. Optimization of tool geometry parameters for turning operations based on the response surface methodology. Measurement, 2011,44(3):580-587
    [17] Bezerra M. A., Santelli R. E., Oliverra E. P.,et al. Re-sponse surface methodology (RSM) as a tool for opti-mization in analytical chemistry.Talanta,2008,76(5):965-977
    [18] Zhang Z. M., Zheng H. L. Optimization for decolori-zation of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology. Journal of Hazardous Materials,2009,172(2-3):1388-1393
    [19] Singh P., Shera S. S., Banik J.,et al. Optimization ofcultural conditions using response surface methodology versus artificial neural network and modeling of L-glutaminase production by Bacillus cereus MTCC 1305.Bioresource Technology,2013,137(4):261-269
  • 加载中
计量
  • 文章访问数:  1599
  • HTML全文浏览数:  1065
  • PDF下载数:  765
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-12-18
  • 刊出日期:  2014-12-03
倪可, 王利平, 肖春宝, 李新颖. 响应面法优化光催化/臭氧氧化深度处理炼油废水[J]. 环境工程学报, 2014, 8(12): 5349-5355.
引用本文: 倪可, 王利平, 肖春宝, 李新颖. 响应面法优化光催化/臭氧氧化深度处理炼油废水[J]. 环境工程学报, 2014, 8(12): 5349-5355.
Ni Ke, Wang Liping, Xiao Chunbao, Li Xinying. Optimization of photocatalytic/ozonation treatment process for oil-refinery wastewater with response surface methodology[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5349-5355.
Citation: Ni Ke, Wang Liping, Xiao Chunbao, Li Xinying. Optimization of photocatalytic/ozonation treatment process for oil-refinery wastewater with response surface methodology[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5349-5355.

响应面法优化光催化/臭氧氧化深度处理炼油废水

  • 1. 常州大学环境与安全工程学院, 常州 213164
  • 2. 中国石化安庆分公司安全环保部, 安庆 246001
基金项目:

常州市社会发展科技计划项目(CS20090008)

常州科教城科研基金(K2012307)

常州市产学研合作项目(CF20140011)

摘要: 利用响应面方法(RSM)对光催化/臭氧氧化深度处理炼油废水工艺进行优化,考察了臭氧通量、光催化剂投加量、初始pH和反应时间对于处理效果的影响,提出采用该工艺的数学模型及优化后的工艺参数。结果表明,各影响因子对COD去除率影响顺序为反应时间>光催化剂投加量>初始pH>臭氧通量,方程的F值为11.54,相关系数为0.9537,调整相关系数为0.915,说明数学模型可以较好地模拟真实的反应曲面。优化得到最佳的工艺参数:臭氧通量1.05 L/min、光催化剂投加量0.33 g/L、初始pH 7.51、反应时间96.95 min,在该条件下,对COD去除率为97.88%,与预测值99.49%接近。采用95%处理水和5%新鲜水混合,水质达到了循环冷凝水的补充水水质指标要求。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回