BiPO4稀土掺杂改性及其可见光光催化性能

赵萍, 熊世威, 张欣欣, 贾漫珂, 黄应平. BiPO4稀土掺杂改性及其可见光光催化性能[J]. 环境工程学报, 2016, 10(5): 2335-2343. doi: 10.12030/j.cjee.201412164
引用本文: 赵萍, 熊世威, 张欣欣, 贾漫珂, 黄应平. BiPO4稀土掺杂改性及其可见光光催化性能[J]. 环境工程学报, 2016, 10(5): 2335-2343. doi: 10.12030/j.cjee.201412164
Zhao Ping, Xiong Shiwei, Zhang Xinxin, Jia Manke, Huang Yingping. BiPO4 doped with rare-earth and its photocatalytic property under visible light irradiation[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2335-2343. doi: 10.12030/j.cjee.201412164
Citation: Zhao Ping, Xiong Shiwei, Zhang Xinxin, Jia Manke, Huang Yingping. BiPO4 doped with rare-earth and its photocatalytic property under visible light irradiation[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2335-2343. doi: 10.12030/j.cjee.201412164

BiPO4稀土掺杂改性及其可见光光催化性能

  • 基金项目:

    国家自然科学基金资助项目(21377067,21407092,21207079)

    三峡库区生态环境教育部工程研究中心开放基金(KF2013-13)

    湖北省创新群体滚动项目(2015CFA021)

  • 中图分类号: X703

BiPO4 doped with rare-earth and its photocatalytic property under visible light irradiation

  • Fund Project:
  • 摘要: 以Bi(NO3)3·5H2O、NH4H2PO4和稀土氧化物为原料,在乙二醇介质中采用溶剂热法制备了不同稀土元素(Ln=Sm、Pr、Tb)掺杂的BiPO4光催化剂(记为BiPO4-Ln,包含BiPO4-Sm、BiPO4-Pr和BiPO4-Tb)。通过X-射线衍射法(XRD)、扫描电子显微镜(SEM)、X-射线光电子能谱(XPS)和紫外可见漫反射光谱(UV-Vis DRS)对制备的催化剂进行了表征。以染料罗丹明B(rhodamine B, RhB)及小分子水杨酸(salicylic acid, SA)为目标化合物,研究了在可见光激发下(λ≥420 nm) BiPO4-Ln对目标污染物的光催化降解特性,结果表明,BiPO4-Ln相较纯BiPO4,其光吸收范围从紫外光扩大到可见光区域,在3种BiPO4-Ln催化剂中,BiPO4-Sm对RhB的吸附能力最强且其光催化活性较强,通过测定其在可见光下降解RhB过程中产生的活性物种,发现BiPO4-Ln在氧化降解RhB的过程中主要涉及到·OH及O-2·的氧化机理。
  • 加载中
  • [1] Pan Chengsi Sipan, Zhu Yongfa. New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. Environmental Science & Technology, 2010, 44(14): 5570-5574
    [2] 刘艳芳, 马新国, 易欣, 等. 磷酸铋纳米棒的可控合成及其光催化性能. 物理化学学报, 2012, 28(3): 654-660 Liu Yanfang, Ma Xinguo, Yi Xin, et al. Controllable synthesis and photocatalytic performance of bismuth phosphate nanorods. Acta Physico-Chimica Sinica, 2012, 28(3): 654-660(in Chinese)
    [3] Xue Fei, Li Haibo, Zhu Yongchun, et al. Solvothermal synthesis and photoluminescence properties of BiPO4 nano-cocoons and nanorods with different phases. Journal of Solid State Chemistry, 2009, 182(6): 1396-1400.
    [4] Yang Min, Shrestha N. K., Hahn R., et al. Electrochemical formation of bismuth phosphate nanorods by anodization of bismuth. Electrochemical and Solid-State Letters, 2010, 13(4): C5-C8
    [5] Wolfert A., Oomen E. W. J. L. Blasse G. Host lattice dependence of the Bi3+ luminescence in orthoborates LnBO3 (with Ln = Sc, Y, La, Gd, or Lu). Journal of Solid State Chemistry, 1985, 59(3): 280-290
    [6] Liu Yanfang, Zhu Yanyan, Xu Jing, et al. Degradation and mineralization mechanism of phenol by BiPO4 photocatalysis assisted with H2O2. Applied Catalysis B: Environmental, 2013, 142-143: 561-567
    [7] Pan Chengsi Sipan, Xu Jing, Wang Yajun, et al. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Advanced Functional Materials, 2012, 22(7): 1518-1524
    [8] Li Zesheng, Yang Siyuan, Zhou Jianmin, et al. Novel mesoporous g-C3N4 and BiPO4 nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances. Chemical Engineering Journal, 2014, 241: 344-351
    [9] Lü Tian, Pan Likun, Liu Xinjuan, et al. Enhanced visible-light photocatalytic degradation of methyl orange by BiPO4-CdS composites synthesized using a microwave-assisted method. The Royal Society of Chemistry, 2012, 2(33): 12706-12709
    [10] Lin Haili, Ye Huifang, Xu Benyan, et al. Ag3PO4 quantum dot sensitized BiPO4: A novel p-n junction Ag3PO4/BiPO4 with enhanced visible-light photocatalytic activity. Catalysis Communications, 2013, 37(5): 55-59
    [11] Wu Siyuan, Zheng Hong, Lian Youwei, et al. Preparation, characterization and enhanced visible-light photocatalytic activities of BiPO4/BiVO4 composites. Materials Research Bulletin, 2013, 48(83): 2901-2907
    [12] Liu Yanfang, Yao Wenqing, Liu Di, et al. Enhancement of visible light mineralization ability and photocatalytic activity of BiPO4/BiOI. Applied Catalysis B: Environmental, 2015, 163: 547-553
    [13] Liu Yanfang, Lü Yanhui, Zhu Yanyan, et al. Fluorine mediated photocatalytic activity of BiPO4. Applied Catalysis B: Environmental, 2014, 147: 851-857
    [14] Wu Jing, Liu Qingju, Gao Pan, et al. Influence of praseodymium and nitrogen co-doping on the photocatalytic activity of TiO2. Materials Research Bulletin, 2011, 46(11): 1997-2003
    [15] Ranjit K. T., Willner I., Bossmann S. H., et al. Lanthanide oxide-doped titanium dioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid. Environmental Science & Technology, 2001, 35(7): 1544-1549
    [16] Tong Tianzhong, Zhang Jinlong, Tian Baozhu, et al. Preparation of Ce-TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. Journal of Colloid and Interface Science, 2007, 315(1): 382-388
    [17] Philip Lenaerts P., Görller-Walrand C, Binnemans K. Luminescent europium (Ⅲ) and terbium (Ⅲ) nicotinate complexes covalently linked to a 1, 10-phenanthroline functionaliszed sol-gel glass. Journal of Luminescence, 2006, 117(2): 163-169
    [18] Su Wenyue, Chen Jianxiong, Wu Ling, et al. Visible light photocatalysis on praseodymium (Ⅲ)-nitrate-modified TiO2 prepared by an ultrasound method. Applied Catalysis B: Environmental, 2008, 77(3-4): 264-271
    [19] Naidu B. S., Vishwanadh B., Sudarsan V., et al. BiPO4: A better host for doping lanthanide ions. Dalton Transactions, 2012, 41(11):3194-3203
    [20] Zhang Yuanan, Fan Huiqing, Li Mengmeng, et al. Ag/BiPO4 heterostructures: Synthesis, characterization and their enhanced photocatalytic properties. Dalton Transactions, 2013, 42(36): 13172-13178
    [21] Zhang Peng, Shao Changlu, Zhang Mingyi, et al. Bi2MoO6 ultrathin nanosheets on ZnTiO3 nanofibers: A 3D open hierarchical heterostructures synergistic system with enhanced visible-light-driven photocatalytic activity. Journal of Hazardous Materials, 2012, 217-218: 422-428
    [22] Ranjit K. T., Cohen H., Willnerz I., et al. Lanthanide oxide-doped titanium dioxide: Effective photocatalysts for the degradation of organic pollutants. Journal of Materials Science, 1999, 34(21): 5273-5280
    [23] Yang Juan, Chen Chuncheng, Ji Hongwei, et al. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: Photoelectrocatalytic study by TiO2-film electrodes. The Journal of Physical Chemistry B, 2005, 109(46): 21900-21907
    [24] Yang Min, Shrestha N. K., Hahn R., et al. Electrochemical formation of bismuth phosphate nanorods by anodization of bismuth. Electrochemical and Solid-State Letters, 2010, 13(4): C5-C8
    [25] Ye Liqun, Gong Chuqing, Liu Jinyan, et al. Bi<i>n(Tu)xCl3n: A novel sensitizer and its enhancement of BiOCl nanosheets' photocatalytic activity. Journal of Materials Chemistry, 2012, 22(17): 8354-8360
    [26] Wang Chao, Ao Yanhui, Wang Peifang, et al. Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 hollow spheres. Applied Surface Science, 2010, 257(1): 227-231
    [27] Xie Yibing, Yuan Chunwei. Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation. Applied Surface Science, 2004, 221(1-4): 17-24
    [28] Wu Taixing, Liu Guangming, Zhao Jincai, et al. Mechanistic study of the TiO2-assisted photodegradation of squarylium cyanine dye in methanolic suspensions exposed to visible light. New Journal of Chemistry, 2000, 24(2): 93-98
    [29] 高远, 徐安武, 祝静艳, 等. RE/TiO2用于NO2-光催化氧化的研究. 催化学报, 2001, 22(1): 53-59 Gao Yuan, Xu Anwu, Zhu Jingyan, et al. Study on photocatalytic oxidation of nitrite over RE/TiO2 photocatalysts. Chinese Journal of Catalysis, 2001, 22(1): 53-59(in Chinese)
  • 加载中
计量
  • 文章访问数:  1913
  • HTML全文浏览数:  1496
  • PDF下载数:  415
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-03-31
  • 刊出日期:  2016-06-03
赵萍, 熊世威, 张欣欣, 贾漫珂, 黄应平. BiPO4稀土掺杂改性及其可见光光催化性能[J]. 环境工程学报, 2016, 10(5): 2335-2343. doi: 10.12030/j.cjee.201412164
引用本文: 赵萍, 熊世威, 张欣欣, 贾漫珂, 黄应平. BiPO4稀土掺杂改性及其可见光光催化性能[J]. 环境工程学报, 2016, 10(5): 2335-2343. doi: 10.12030/j.cjee.201412164
Zhao Ping, Xiong Shiwei, Zhang Xinxin, Jia Manke, Huang Yingping. BiPO4 doped with rare-earth and its photocatalytic property under visible light irradiation[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2335-2343. doi: 10.12030/j.cjee.201412164
Citation: Zhao Ping, Xiong Shiwei, Zhang Xinxin, Jia Manke, Huang Yingping. BiPO4 doped with rare-earth and its photocatalytic property under visible light irradiation[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2335-2343. doi: 10.12030/j.cjee.201412164

BiPO4稀土掺杂改性及其可见光光催化性能

  • 1.  三峡大学生物与制药学院, 宜昌 443002
  • 2.  三峡库区生态环境教育部工程研究中心(三峡大学), 宜昌 443002
  • 3.  三峡地区地质灾害与生态环境湖北省协同创新中心(三峡大学), 宜昌 443002
基金项目:

国家自然科学基金资助项目(21377067,21407092,21207079)

三峡库区生态环境教育部工程研究中心开放基金(KF2013-13)

湖北省创新群体滚动项目(2015CFA021)

摘要: 以Bi(NO3)3·5H2O、NH4H2PO4和稀土氧化物为原料,在乙二醇介质中采用溶剂热法制备了不同稀土元素(Ln=Sm、Pr、Tb)掺杂的BiPO4光催化剂(记为BiPO4-Ln,包含BiPO4-Sm、BiPO4-Pr和BiPO4-Tb)。通过X-射线衍射法(XRD)、扫描电子显微镜(SEM)、X-射线光电子能谱(XPS)和紫外可见漫反射光谱(UV-Vis DRS)对制备的催化剂进行了表征。以染料罗丹明B(rhodamine B, RhB)及小分子水杨酸(salicylic acid, SA)为目标化合物,研究了在可见光激发下(λ≥420 nm) BiPO4-Ln对目标污染物的光催化降解特性,结果表明,BiPO4-Ln相较纯BiPO4,其光吸收范围从紫外光扩大到可见光区域,在3种BiPO4-Ln催化剂中,BiPO4-Sm对RhB的吸附能力最强且其光催化活性较强,通过测定其在可见光下降解RhB过程中产生的活性物种,发现BiPO4-Ln在氧化降解RhB的过程中主要涉及到·OH及O-2·的氧化机理。

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回