脱氮副球菌YF1微生物燃料电池生物阴极脱氮和产电

王清萍, 刘培文, 翁秀兰, 陈祖亮. 脱氮副球菌YF1微生物燃料电池生物阴极脱氮和产电[J]. 环境工程学报, 2014, 8(8): 3277-3282.
引用本文: 王清萍, 刘培文, 翁秀兰, 陈祖亮. 脱氮副球菌YF1微生物燃料电池生物阴极脱氮和产电[J]. 环境工程学报, 2014, 8(8): 3277-3282.
Wang Qingping, Liu Peiwen, Weng Xiulan, Chen Zuliang. Denitrification and electrogenesis in cathode of microbial fuel cells by Parococcus sp.strain YF1[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3277-3282.
Citation: Wang Qingping, Liu Peiwen, Weng Xiulan, Chen Zuliang. Denitrification and electrogenesis in cathode of microbial fuel cells by Parococcus sp.strain YF1[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3277-3282.

脱氮副球菌YF1微生物燃料电池生物阴极脱氮和产电

  • 基金项目:

    福建师范大学闽江学者人才引进基金资助项目(200604)

  • 中图分类号: X523

Denitrification and electrogenesis in cathode of microbial fuel cells by Parococcus sp.strain YF1

  • Fund Project:
  • 摘要: 以脱氮副球菌YF1构建纯种生物阴极微生物燃料电池(microbial fuel cell,MFC)进行脱氮和产电机理的研究。研究结果发现,阴极碳氮比、pH值对产电和脱氮效率有明显影响。当MFC的阴极运行条件pH值为8.0,碳氮比为20时,运行时间15 h时,脱氮率高达100%,输出电压为150 mV。上述结果表明,微生物燃料电池运行过程中,细菌降解硝酸根的机理为将硝酸根还原为N2或者直接将其作为自身的营养物质而利用。循环伏安(CV)与扫描电镜(SEM)的结果表明,在微生物燃料电池运行中,副球菌YF1通过接触导电作为产电的电子供体。
  • 加载中
  • [1] 张维理,武淑霞, Kolbe H.,等.中国农业面源污染形势估计及控制对策——1.21世纪初期中农业面源污染的形势估计.中国农业科学,2004,37(7):1008-1017 Zhang W. L.,Wu S. X.,Kolbe H.,et al.Estimation of agricultural non-point source pollution in China and the alleviating strategies I. Estimation of agricultural non-point source pollution in China in early 21 Century. Scientia Agricultura Sinica, 2004,37(7):1008-1017 (in Chinese)
    [2] 张自杰,林荣忱.排水工程(第4版).北京:中国建筑工业出版社,2000
    [3] Bruce E.L.Exoelectrogenic bacteria that power microbial fuel cells.Nature Reviews Microbiology, 2009,377(7):375-381
    [4] 黄霞,范明志,梁鹏,等.微生物燃料电池阳极特性对产电性能的影响.中国给水排水,2007,23(3):8-13 Huang X.,Fan M. Z.,Liang P.,et al.Influence of anodic characters of microbial fuel cell on power generation performance.China Water & Wastewater,2007,23(3):8-13(in Chinese)
    [5] Sebastià P.,Marc S.,Ariadna V. S.,et al.Autotrophic nitrite removal in the cathode of microbial fuel cells.Bioresource Technology,2011,102 (6):4462-4467
    [6] Bernardino V.,Suzanne T. R., Korneel R.,et al.Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode.Bioresource Technology,2011,102 (1):334-341
    [7] Shan X., Peng L.,Yang C.,et al.Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system.Bioresource Technology,2011,102 (1):348-354
    [8] 杨金萍,汪家权,陈少华,等.双室微生物燃料电池处理硝酸盐废水.环境工程学报,2013,7(5):1837-1842 Yang J. P.,Wang J. Q.,Chen S. H.,et al.Treatment of wastewater containing nitrate in a double-chamber microbial fuel cell. Chinese Journal of Environmental Engineering,2013,7(5):1837-1842(in Chinese)
    [9] Liu Y.,Chen Z. L.,Megharaj M.,et al.Removal of nitrate using Paracoccus sp. YF1 immobilized on bamboo carbon. Journal of Hazardous Materials,2012,229-230(16):419-425
    [10] Li J. J.,Liu H. L.,Cheng X. W.,et al.Preparation and characterization of palladium/polypyrrole/foam nickel electrode for electrocatalytic hydrodechlorination.Chemical Engineering Journal,2013,225 (1):489-498
    [11] Liu H.,Ramnarayanan R.,Logan B. E.,et al.Production of electricity during wastewater treatment using a single chamber microbial fuel cell.Environmental Science & Technology,2004,38(7):2281-2285
    [12] Bing M. H.,Huang C. P. Influence of ionic strength and pH on hydrophobicity and zeta potential of Giardia and Cryptosporidium.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,201 (1-3):201-206
    [13] Nikhil S. M.,Derek R. L.Microbial nanowires for bioenergy applications. Current Opinion in Biotechnology,2014,27(6):88-95
    [14] Bruce E. Logan.Microbial Fuel Cells.John Wiley&Sons,Inc.2008
    [15] Huang L. P.,John M. R.,Xie Q.,et al.Electron transfer mechanisms, new applications,and performance of biocathode microbial fuel cells.Bioresource Technology, 2011,102 (1):316-323
    [16] 刘燕,甘莉,黄哲强,等.脱氮副球菌YF1的反硝化特性研究.水处理技术, 2010,36(10):61-65 Liu Y., Gan L.,Huang Z. Q.,et al.Study on denitrification characteristics of Paracoccus YF1.Thechnology of Water Treatment,2010,36(10):61-65 (in Chinese)
  • 加载中
计量
  • 文章访问数:  1602
  • HTML全文浏览数:  991
  • PDF下载数:  712
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-04-04
  • 刊出日期:  2014-07-31
王清萍, 刘培文, 翁秀兰, 陈祖亮. 脱氮副球菌YF1微生物燃料电池生物阴极脱氮和产电[J]. 环境工程学报, 2014, 8(8): 3277-3282.
引用本文: 王清萍, 刘培文, 翁秀兰, 陈祖亮. 脱氮副球菌YF1微生物燃料电池生物阴极脱氮和产电[J]. 环境工程学报, 2014, 8(8): 3277-3282.
Wang Qingping, Liu Peiwen, Weng Xiulan, Chen Zuliang. Denitrification and electrogenesis in cathode of microbial fuel cells by Parococcus sp.strain YF1[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3277-3282.
Citation: Wang Qingping, Liu Peiwen, Weng Xiulan, Chen Zuliang. Denitrification and electrogenesis in cathode of microbial fuel cells by Parococcus sp.strain YF1[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3277-3282.

脱氮副球菌YF1微生物燃料电池生物阴极脱氮和产电

  • 1. 福建师范大学环境科学与工程学院, 福州 350007
基金项目:

福建师范大学闽江学者人才引进基金资助项目(200604)

摘要: 以脱氮副球菌YF1构建纯种生物阴极微生物燃料电池(microbial fuel cell,MFC)进行脱氮和产电机理的研究。研究结果发现,阴极碳氮比、pH值对产电和脱氮效率有明显影响。当MFC的阴极运行条件pH值为8.0,碳氮比为20时,运行时间15 h时,脱氮率高达100%,输出电压为150 mV。上述结果表明,微生物燃料电池运行过程中,细菌降解硝酸根的机理为将硝酸根还原为N2或者直接将其作为自身的营养物质而利用。循环伏安(CV)与扫描电镜(SEM)的结果表明,在微生物燃料电池运行中,副球菌YF1通过接触导电作为产电的电子供体。

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回