垃圾渗滤液生物处理出水的深度处理组合工艺

高星, 李平, 吴锦华. 垃圾渗滤液生物处理出水的深度处理组合工艺[J]. 环境工程学报, 2014, 8(6): 2376-2380.
引用本文: 高星, 李平, 吴锦华. 垃圾渗滤液生物处理出水的深度处理组合工艺[J]. 环境工程学报, 2014, 8(6): 2376-2380.
Gao Xing, Li Ping, Wu Jinhua. Combination process for advanced treatment of biotreatment effluent of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2376-2380.
Citation: Gao Xing, Li Ping, Wu Jinhua. Combination process for advanced treatment of biotreatment effluent of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2376-2380.

垃圾渗滤液生物处理出水的深度处理组合工艺

  • 基金项目:

    广东省科技计划项目(2009A080303014)

  • 中图分类号: X703.1

Combination process for advanced treatment of biotreatment effluent of landfill leachate

  • Fund Project:
  • 摘要: 采用“混凝-电解氧化-完全混合式活性污泥法(CSTR)”组合工艺深度处理垃圾渗滤液生物处理出水。探索了工艺的组合及各种工艺操作条件对垃圾渗滤液深度处理效果的影响,并对其影响机理进行了初步探讨。结果表明,以PAC为混凝剂时,在pH和药剂(有效成分)投加量分别为6.0和600 mg/L条件下,渗滤液COD去除率达到50%,有效降低了难溶惰性COD含量,缩短了后续电化学处置时间。混凝工艺后,采用电化学工艺处理,在最优工艺条件下:pH为6.0、电流I为1.2 A(电流密度为18.18 mA/cm2)、Cl-投加量为1 000 mg/L、极板距离为2 cm,电解30 min渗滤液COD去除率达到36%,同时,难降解有毒物含量明显降低,渗滤液可生化性TbOD/COD由10%提升至最大值64%。最后采用CSTR处理渗滤液电解出水,系统出水COD、氨氮和色度分别为100~150 mg/L、7~13 mg/L和25倍,为反渗透(RO)工序提供了良好的水质条件。
  • 加载中
  • [1] 陈胜,孙德智,陈桂霞,等.厌氧-好氧移动床生物膜反应器串联处理垃圾渗滤液.环境科学,2006,27(10):2076-2080 Chen S.,Sun D. Z.,Chen G. X.,et al. Treatment of landfill leachate using sequential anaerobic /aerobic moving-bed biofilm reactor. Environmental Science, 2006,27(10):2076-2080(in Chinese)
    [2] 孙洪伟,彭永臻,时晓宁,等.高氮渗滤液缺氧/厌氧UASB-SBR工艺低温深度脱氮.中国环境科学, 2009,29(2):207-212 Sun H. W.,Peng Y. Z.,Shi X. N.,et al. Biological advanced nitrogen removal from landfill leachate of high concentration nitrogen by anoxic/anaerobic UASB sequencing batch reactor (SBR) at low temperature.China Environmental Science,2009,29(2): 207-212(in Chinese)
    [3] 郑淑文,王淑莹,张树军,等.两级UASB与好氧组合工艺处理城市生活垃圾渗滤液的启动研究.环境污染治理技术与设备,2006,7(10):88-92 Zheng S. W.,Wang S. Y.,Zhang S. J.,et al. Start up of two-stage up-flow anaerobic sludge bed blanket and aerobic reactor in treating municipal landfill leachate. Techniques and Equipment for Environmental Pollution Control,2006,7(10): 88-92(in Chinese)
    [4] Marco P.,Carlos A. M. H. Role of electrode materials for the anodic oxidation of a real landfill leachate: Comparison between Ti-Ru-Sn ternary oxide, PbO2 and boron-doped diamond anode.Chemosphere,2013,90(4): 1455-1460
    [5] 许保玖,龙腾锐.当代给水与废水处理原理(第2版).北京:高等教育出版社,2000
    [6] Adelaida C.,Ane U.,Maria J. R.,et al. Ammonium removal from landfill leachate by anodic oxidation. Journal of Hazardous Materials,2007,144(3): 715-719
    [7] 国家环境保护局. 水和废水监测分析方法(第4版). 北京:中国环境科学出版社,2002
    [8] Li W., Hua T., Zhou Q. X. Treatment of stabilized landfill leachate by the combined process of coagulation/flocculation and powder activated carbon adsorption. Desalination,2010,264(1-2):56-62
    [9] Scialdone O.,Randazzo S.,Galia A.,et al. Electrochemical oxidation of organics in water: Role of operative parameters in the absence and in the presence of NaCl. Water Research,2009,43(8): 2260-2272
    [10] Szpyrkowicz L.,Kelsall G. H.,Kaul S. N.,et al. Performance of electrochemical reactor for treatment of tannery wastewaters. Chemical Engineering Science,2001,56(4):1579-1586
    [11] Jéssica H.,Bezerra R.,Maésia M.,et al. Application of electrochemical oxidation as alternative treatment of produced water generated by Brazilian petrochemical industry. Fuel Processing Technology, 2012,96(4):80-87
    [12] Arseto Y. B.,Damien J. B.,Ina K.,et al. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH. Water Research,2012,46(18):6104-6112
    [13] Chen G. Electrochemical technologies in wastewater treatment. Separation and Purification Technology,2004,38(1):11-41
    [14] 庞雅宁,赵国华,刘磊,等.金刚石膜电极电化学氧化提高废水可生化性的研究.中国环境科学,2009,29(12):1255-1259 Pang Y. N.,Zhao G. H.,Liu L.,et al. Enhanced biodegradability of wastewater with electrochemical oxidation on boron-doped diamond anode.China Environmental Science,2009,29(12): 1255-1259(in Chinese)
    [15] 刘丹,刘咏,赵仕林,等.腐殖酸在氯离子体系中的电解氧化特性. 环境科学学报,2008,28(5): 988-994 Liu D.,Liu Y.,Zhao S. L.,et al.The electrolytic oxidation characteristics of humic acid in the presence of Cl-. Acta Scientiae Circumstantiae,2008,28(5): 988-994(in Chinese)
  • 加载中
计量
  • 文章访问数:  2259
  • HTML全文浏览数:  1585
  • PDF下载数:  676
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-03-09
  • 刊出日期:  2014-05-29
高星, 李平, 吴锦华. 垃圾渗滤液生物处理出水的深度处理组合工艺[J]. 环境工程学报, 2014, 8(6): 2376-2380.
引用本文: 高星, 李平, 吴锦华. 垃圾渗滤液生物处理出水的深度处理组合工艺[J]. 环境工程学报, 2014, 8(6): 2376-2380.
Gao Xing, Li Ping, Wu Jinhua. Combination process for advanced treatment of biotreatment effluent of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2376-2380.
Citation: Gao Xing, Li Ping, Wu Jinhua. Combination process for advanced treatment of biotreatment effluent of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2376-2380.

垃圾渗滤液生物处理出水的深度处理组合工艺

  • 1.  华南理工大学环境与能源学院工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006
  • 2.  华南理工大学污染控制与生态修复广东省普通高等学校重点实验室, 广州 510006
基金项目:

广东省科技计划项目(2009A080303014)

摘要: 采用“混凝-电解氧化-完全混合式活性污泥法(CSTR)”组合工艺深度处理垃圾渗滤液生物处理出水。探索了工艺的组合及各种工艺操作条件对垃圾渗滤液深度处理效果的影响,并对其影响机理进行了初步探讨。结果表明,以PAC为混凝剂时,在pH和药剂(有效成分)投加量分别为6.0和600 mg/L条件下,渗滤液COD去除率达到50%,有效降低了难溶惰性COD含量,缩短了后续电化学处置时间。混凝工艺后,采用电化学工艺处理,在最优工艺条件下:pH为6.0、电流I为1.2 A(电流密度为18.18 mA/cm2)、Cl-投加量为1 000 mg/L、极板距离为2 cm,电解30 min渗滤液COD去除率达到36%,同时,难降解有毒物含量明显降低,渗滤液可生化性TbOD/COD由10%提升至最大值64%。最后采用CSTR处理渗滤液电解出水,系统出水COD、氨氮和色度分别为100~150 mg/L、7~13 mg/L和25倍,为反渗透(RO)工序提供了良好的水质条件。

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回