活性焦对水中汞的吸附性能

李志超, 兰华春, 武利园, 刘会娟, 曲久辉. 活性焦对水中汞的吸附性能[J]. 环境工程学报, 2014, 8(5): 1899-1905.
引用本文: 李志超, 兰华春, 武利园, 刘会娟, 曲久辉. 活性焦对水中汞的吸附性能[J]. 环境工程学报, 2014, 8(5): 1899-1905.
Li Zhichao, Lan Huachun, Wu Liyuan, Liu Huijuan, Qu Jiuhui. Adsorptive behaviors of activated coke towards aquatic mercury[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1899-1905.
Citation: Li Zhichao, Lan Huachun, Wu Liyuan, Liu Huijuan, Qu Jiuhui. Adsorptive behaviors of activated coke towards aquatic mercury[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1899-1905.

活性焦对水中汞的吸附性能

  • 基金项目:

    中国科学院知识创新工程重要方向项目(KZCX2-EW-QN402)

  • 中图分类号: X703

Adsorptive behaviors of activated coke towards aquatic mercury

  • Fund Project:
  • 摘要: 采用活性焦作为吸附剂,通过静态吸附实验,研究了活性焦对水中汞的吸附特性,并初步探讨了其吸附机理。活性焦对汞的吸附可用拟二级动力学模型描述;在pH为5时能达到对Hg(Ⅱ)的最大吸附容量,在不同离子强度下均能保证对Hg(Ⅱ)有较高的去除率;据Langmuir吸附等温线模型计算出活性焦对Hg(Ⅱ)的饱和吸附容量可达412.1 mg/g。结合红外光谱、Zeta电位测试的结果,可推测活性焦对Hg的吸附过程是物理吸附和化学吸附综合作用的结果。活性焦是一种成本低、效果显著且稳定的吸附剂,有望在含汞废水处理中发挥重要作用。
  • 加载中
  • [1] Clarkson T. W. The toxicology of mercury. Critical Reviews in Clinical Laboratory Sciences, 1997, 34(4): 369-403
    [2] Grandjean P., Weihe P., Jrgensen T. J., et al. Impact of maternal seafood diet on fetal exposure to mercury, selenium, and lead. Archives of Environmental Health: An International Journal, 1992, 47(3): 185-195
    [3] Berglund F., Berlin M. Risk of methylmercury cumulation in man and mammals and the relation between body burden of methylmercury and toxic effects. Chemical Fallout: Current Research on Persistent Pesticides, 1969
    [4] Baeyens R., Ebinghous R., Vasilev O. Global and regional mercury cycles: Sources, fluxes and mass balances. Kluwer Academic Publishers, 1996
    [5] Wajima T., Murakami K., Kato T., et al. Heavy metal removal from aqueous solution using carbonaceous K2 S-impregnated adsorbent. Journal of Environmental Sciences, 2009, 21(12): 1730-1734
    [6] Nadeem M., Shabbir M., Abdullah M. A., et al. Sorption of cadmium from aqueous solution by surfactant-modified carbon adsorbents. Chemical Engineering Journal, 2009, 148(2-3): 365-370
    [7] Cheremisinoff P. N. Handbook of water and wastewater treatment technology. USA:Butterworth-Heinemann, 2001
    [8] Mattigod S.V., Fryxell G.E., Feng X., et al. Removal of mercury from aqueous streams of fossil fuel power plants using novel functionalized nanoporous sorbents. Springer, New York: Coal Combustion Byproducts and Environmental Issues, 2006
    [9] Yardim M. F., Budinova T., Ekinci E., et al. Removal of mercury (Ⅱ) from aqueous solution by activated carbon obtained from furfural. Chemosphere, 2003, 52(5): 835-841
    [10] Gomez-Serrano V., Macias-Garcia A., Espinosa-Mansilla A., et al. Adsorption of mercury, cadmium and lead from aqueous solution on heat-treated and sulphurized activated carbon. Water Research, 1998, 32(1): 1-4
    [11] McDougall G. J., Hancock R. D., Nicol M. J., et al. The mechanism of the adsorption of gold cyanide on activated carbon. Journal of the South African Institute Mining and Metallurgy, 1980, 80(9): 344-356
    [12] Cheremisinoff P. N. Handbook of Water and Wastewater Treatment Technology. New York: Marcel Dekker, Inc, 1995
    [13] Mohan D., Pittman C. U. Arsenic removal from water/wastewater using adsorbents——A critical review. Journal of Hazardous Materials, 2007, 142(1-2): 1-53
    [14] Ho Y.S., McKay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451-465
    [15] Tao S., Li C., Fan X., et al. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas. Chemical Engineering Journal, 2012, 210(1): 547-556
    [16] Jastrzb K. Properties of activated cokes used for flue gas treatment in industrial waste incineration plants. Fuel Processing Technology, 2012, 101(1): 16-22
    [17] 冯治宇. 活性焦制备与应用技术. 大连:大连理工大学出版社, 2007
    [18] Zhang M., Zhao Q., Bai X., et al. Adsorption of organic pollutants from coking wastewater by activated coke. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 362(1-3): 140-146
    [19] Itaya Y., Kawahara K., Lee C., et al. Dry gas cleaning process by adsorption of H2S into activated cokes in gasification of carbon resources. Fuel, 2009, 88(9): 1665-1672
    [20] Li J., Kobayashi N., Hu Y. The activated coke preparation for SO2 adsorption by using flue gas from coal power plant.Chemical Engineering and Processing: Process Intensification, 2008, 47(1): 118-127
    [21] Jastrząb K. Changes of activated coke properties in cyclic adsorption treatment of flue gases. Fuel Processing Technology, 2012, 104(1): 371-377
    [22] Ogriseck S., Vanegas G. Experimental investigations of ammonia adsorption and nitric oxide reduction on activated coke. Chemical Engineering Journal, 2010, 160(2): 641-650
    [23] Wießner A., Remmler M., Kuschk P., et al. The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 139(1): 91-97
    [24] Shawwa A. R., Smith D. W., Sego D. C. Color and chlorinated organics removal from pulp mills wastewater using activated petroleum coke. Water Research, 2001, 35(3): 745-749
    [25] Zhang M., Zhao Q., Ye Z. Organic pollutants removal from 2, 4, 6-trinitrotoluene (TNT) red water using low cost activated coke. Journal of Environmental Sciences, 2011, 23(12): 1962-1969
    [26] Newcombe G., Donati C., Drikas M., et al. Adsorption onto activated carbon: Electrostatic and non-electrostatic interactions. Water Supply, 1996, 14(2): 129-144
    [27] Puanngam M., Unob F. Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg (Ⅱ) ions. Journal of Hazardous Materials, 2008, 154(1-3): 578-587
    [28] Delac te C., Gaslain F. O. M., Lebeau B., et al. Factors affecting the reactivity of thiol-functionalized mesoporous silica adsorbents toward mercury (Ⅱ). Talanta, 2009, 79(3): 877-886
    [29] Zhang G., Liu H., Liu R., et al. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent. Journal of Colloid and Interface Science, 2009, 335(2): 168-174
    [30] Maliyekkal S. M., Sharma A. K., Philip L. Manganese-oxide-coated alumina: A promising sorbent for defluoridation of water. Water Research, 2006, 40(19): 3497-3506
    [31] Pang Y., Zeng G., Tang L., et al. PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions.Desalination, 2011, 281(1): 278-284
    [32] Gao B., Gao Y., Li Y. Preparation and chelation adsorption property of composite chelating material poly (amidoxime)/SiO2 towards heavy metal ions.Chemical Engineering Journal, 2010, 158(3): 542-549
    [33] McBride M. B. A critique of diffuse double layer models applied to colloid and surface chemistry. Clay and Clay Minerals, 1997, 45(4): 598-608
    [34] Lützenkirchen J. Ionic strength effects on cation sorption to oxides: Macroscopic observations and their significance in microscopic interpretation. Journal of Colloid and Interface Science, 1997, 195(1): 149-155
    [35] Limousin G., Gaudet J. P., Charlet L., et al. Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry, 2007, 22(2): 249-275
    [36] Cai J. H., Jia C. Q. Mercury removal from aqueous solution using coke-derived sulfur-impregnated activated carbons. Industrial & Engineering Chemistry Research, 2010, 49(6): 2716-2721
    [37] Inbaraj B.S., Sulochana N. Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa. Journal of Hazardous Materials, 2006, 133(1): 283-290
    [38] Kadirvelu K., Kavipriya M., Karthika C., et al. Mercury (Ⅱ) adsorption by activated carbon made from sago waste. Carbon, 2004, 42(4): 745-752
    [39] Kang J., Liu H., Zheng Y. M., et al. Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan. Journal of Colloid and Interface Science, 2010, 344(1): 117-125
    [40] Zhang J., Dai J., Wang R., et al. Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 335(1-3): 194-201
    [41] 陈洁, 宋启泽. 有机波谱分析. 北京:北京理工大学出版社, 1996
    [42] Chingombe P., Saha B., Wakeman R. J. Surface modification and characterisation of a coal-based activated carbon. Carbon, 2005, 43(15): 3132-3143
    [43] Marinova K. G., Alargova R. G., Denkov N. D., et al. Charging of oil-water interfaces due to spontaneous adsorption of hydroxyl ions. Langmuir, 1996, 12(8): 2045-2051
    [44] Hackley V. A. Colloidal processing of silicon nitride with poly (acrylic acid): I, adsorption and electrostatic interactions.J. Am. Ceram. Soc., 1997, 80(9): 2315-2325
  • 加载中
计量
  • 文章访问数:  1324
  • HTML全文浏览数:  664
  • PDF下载数:  701
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-05-07
  • 刊出日期:  2014-05-06
李志超, 兰华春, 武利园, 刘会娟, 曲久辉. 活性焦对水中汞的吸附性能[J]. 环境工程学报, 2014, 8(5): 1899-1905.
引用本文: 李志超, 兰华春, 武利园, 刘会娟, 曲久辉. 活性焦对水中汞的吸附性能[J]. 环境工程学报, 2014, 8(5): 1899-1905.
Li Zhichao, Lan Huachun, Wu Liyuan, Liu Huijuan, Qu Jiuhui. Adsorptive behaviors of activated coke towards aquatic mercury[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1899-1905.
Citation: Li Zhichao, Lan Huachun, Wu Liyuan, Liu Huijuan, Qu Jiuhui. Adsorptive behaviors of activated coke towards aquatic mercury[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1899-1905.

活性焦对水中汞的吸附性能

  • 1.  中国科学院生态环境研究中心, 北京 100085
  • 2.  中国科学院大学, 北京 100049
  • 3.  审计署驻广州特派员办事处, 广州 510623
基金项目:

中国科学院知识创新工程重要方向项目(KZCX2-EW-QN402)

摘要: 采用活性焦作为吸附剂,通过静态吸附实验,研究了活性焦对水中汞的吸附特性,并初步探讨了其吸附机理。活性焦对汞的吸附可用拟二级动力学模型描述;在pH为5时能达到对Hg(Ⅱ)的最大吸附容量,在不同离子强度下均能保证对Hg(Ⅱ)有较高的去除率;据Langmuir吸附等温线模型计算出活性焦对Hg(Ⅱ)的饱和吸附容量可达412.1 mg/g。结合红外光谱、Zeta电位测试的结果,可推测活性焦对Hg的吸附过程是物理吸附和化学吸附综合作用的结果。活性焦是一种成本低、效果显著且稳定的吸附剂,有望在含汞废水处理中发挥重要作用。

English Abstract

参考文献 (44)

返回顶部

目录

/

返回文章
返回