微生物絮凝剂去除废水中Cd(Ⅱ)的CCD优化及絮凝机制

魏淑梅, 杨朝晖, 曾光明, 黄兢, 张媛媛, 汪理科. 微生物絮凝剂去除废水中Cd(Ⅱ)的CCD优化及絮凝机制[J]. 环境工程学报, 2013, 7(9): 3270-3276.
引用本文: 魏淑梅, 杨朝晖, 曾光明, 黄兢, 张媛媛, 汪理科. 微生物絮凝剂去除废水中Cd(Ⅱ)的CCD优化及絮凝机制[J]. 环境工程学报, 2013, 7(9): 3270-3276.
Wei Shumei, Yang Zhaohui, Zeng Guangming, Huang Jing, Zhang Yuanyuan, Wang Like. Optimization of cadmium removal using CCD design by microbial flocculants and investigation of flocculation mechanism[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3270-3276.
Citation: Wei Shumei, Yang Zhaohui, Zeng Guangming, Huang Jing, Zhang Yuanyuan, Wang Like. Optimization of cadmium removal using CCD design by microbial flocculants and investigation of flocculation mechanism[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3270-3276.

微生物絮凝剂去除废水中Cd(Ⅱ)的CCD优化及絮凝机制

  • 基金项目:

    国家自然科学基金资助项目(30970105,51078131)

    国家"水体污染控制与治理"科技重大专项(2009ZX07212-001-02)

  • 中图分类号: X703.1

Optimization of cadmium removal using CCD design by microbial flocculants and investigation of flocculation mechanism

  • Fund Project:
  • 摘要: 应用CCD(中心复合设计)法研究了微生物絮凝剂去除废水中Cd(Ⅱ)的最佳条件组合,并根据傅里叶变换红外光谱与环境扫描电镜分析讨论了絮凝机制。CCD设计以Cd(Ⅱ)去除率为响应值,优化Cd(Ⅱ)初始浓度、MBFGA1投加量、溶液初始pH和反应时间4种因素。方差分析显示,模型F值为11.71,PR=0.9154,拟合模型极显著,Cd(Ⅱ)初始浓度、pH和反应时间为显著性因素。在最优化条件下:Cd(Ⅱ)初始浓度23.60 mg/L,MBFGA1投加量27.74 mg/L,pH为9.5,反应时间15.97 min,检测实验Cd(Ⅱ)去除率高于99.5%。傅里叶变换红外光谱图表明,絮凝剂分子上羧基、羟基、磷酸基等官能团参与了絮凝过程,并形成了氢键。结合环境扫描电镜图分析得出,MBFGA1的絮凝机制包括化学反应、吸附架桥、氢键和范德华力结合等作用。
  • 加载中
  • [1] 高万超,杨朝晖,黄兢,等.微生物絮凝剂捕集Cu(Ⅱ)的响应面优化及机理研究.环境工程学报,2011,5(11):2411-2416 Gao Wanchao, Yang Zhaohui, Huang Jing, et al. Optimization of response surface and the mechanism study of microbial flocculants on capturing Cu(Ⅱ). Chinese Journal of Environmental Engineering,2011, 5(11):2411-2416(in Chinese)
    [2] 马前,张小龙.国内外重金属废水处理新技术的研究进展.环境工程学报,2007,1(7):10-14 Ma Qian, Zhang Xiaolong. Advances in new technology for heavy metal wastewater treatment at home and abroad. Chinese Journal of Environmental Engineering,2007, 1(7):10-14(in Chinese)
    [3] Monika Jain, Garg V.K., Kadirvelu K. Investigation of Cr(Ⅵ) adsorption onto chemically treated Helianthus annuus optimization using response surface methodology. Bioresource Technology, 2011, 102(2):600-605
    [4] Rajesh S., Rout C., Rajender K., et al. Biosorption optimization of lead(Ⅱ), cadmium(Ⅱ) and copper(Ⅱ) using response surface methodology and applicability in isotherms and thermodynamics modeling. Journal of Hazardous Materials, 2010, 174(1-3):623-634
    [5] Farshid G., Habibollah Y., Seyed M. G., et al. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chemical Engineering Journal,2008,145(2):267-275
    [6] Malihe A., Habibollah Y., Nader B. Statistical modeling and optimization of the cadmium biosorption process in an aqueous solution using Aspergillus niger. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 337(1-3): 67-73
    [7] 黄兢,杨朝晖,孙珮石,等.微生物絮凝剂与聚合氯化铝复配的响应面优化.中国环境科学,2008,28(11):1014-1019 Huang Jing, Yang Zhaohui, Sun Peishi, et al. Application of response surface methodology to the composite flocculant of MBFGA1 and PAC. China Environmental Science, 2008, 28(11):1014-1019 (in Chinese)
    [8] 杨朝晖,陶然,曾光明,等.多粘类芽孢杆菌GA1产絮凝剂的培养基和分段培养工艺.环境科学,2006,27(7):1444-1449 Yang Zhaohui, Tao Ran, Zeng Guangming, et al. Nulture medium and grading culture technics for bioflocculant production by Paenibacillus polymyxa GA1. Environmental Science, 2006,27(7):1444-1449 (in Chinese)
    [9] 阮敏,杨朝晖,曾光明,等.多粘类芽孢杆菌GA1所产絮凝剂的絮凝性能研究及机理探讨.环境科学,2007,28(10):2336-2341 Ruan Min, Yang Zhaohui, Zeng Guangming, et al. Flocculating capability and mechanism of bioflocculant produced by Paenibacillus polymyxa GA1. Environmental Science, 2007,28(10):2336-2341(in Chinese)
    [10] Garg, U.K., Kaur, M.P., Sud, D., et al. Removal of nickel (Ⅱ) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresour. Technol., 2008, 99(5):1325-1331
    [11] Salman J.M., Hameed B.H. Effect of preparation conditions of oil palm fronds activated carbon on adsorption. Journal of Hazardous Materials, 2010, 175(1-3):133-137
    [12] Ewa Kurek, Francis A.J., et al. Immobilization of cadmium by microbial extracellular product. Arch. Environ. Contan. Toxical.1991, 20(5):106-111
    [13] 李璐,杨朝晖,孙珮石,等.基于响应面优化条件下柚皮对Pb2+的吸附.环境科学学报, 2009, 29(7): 1426-1433 Li Lu, Yang Zhaohui, Sun Peishi, et al. Optimization of thebiosorption of Pb2+ by citron peelusing response surface methodology. Acta Scientiae Circumstantiae, 2009, 29(7): 1426-1433 (in Chinese)
    [14] Esposito A., Pagnanelli F., Vegli F. pH-related equilibria models for biosorption in single metal systems. Chemical Engineering Science, 2002, 57(3):307-313
    [15] 李润卿,范国梁,渠荣遴.有机结构波谱分析.天津:天津大学出版社,2002
    [16] Paul D. Lewis, Keir E. Lewis, Robin Ghosal, et al. Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer, 2010, 10(5):640-667
    [17] Panda S.P., Sadafule D.S. FTIR spectral evaluation of polyurethane adhesive bonds in perspex canopies of aircraft.Defence Sci., 1996,46(2):171-174
    [18] 孙道华,李清彪,凌雪萍,等.气单胞菌SH10吸附银离子机制的研究.环境科学学报,2006.26(7):1107-1110 Sun Daohua, Li Qingbiao, Ling Xueping, et al. Studies on mechanisms of silver biosorption by Aeromonas SH10. Acta Scientiae Circumstantiae, 2006, 26(7):1107-1110(in Chinese)
  • 加载中
计量
  • 文章访问数:  1884
  • HTML全文浏览数:  1052
  • PDF下载数:  1003
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-05-24
  • 刊出日期:  2013-09-15
魏淑梅, 杨朝晖, 曾光明, 黄兢, 张媛媛, 汪理科. 微生物絮凝剂去除废水中Cd(Ⅱ)的CCD优化及絮凝机制[J]. 环境工程学报, 2013, 7(9): 3270-3276.
引用本文: 魏淑梅, 杨朝晖, 曾光明, 黄兢, 张媛媛, 汪理科. 微生物絮凝剂去除废水中Cd(Ⅱ)的CCD优化及絮凝机制[J]. 环境工程学报, 2013, 7(9): 3270-3276.
Wei Shumei, Yang Zhaohui, Zeng Guangming, Huang Jing, Zhang Yuanyuan, Wang Like. Optimization of cadmium removal using CCD design by microbial flocculants and investigation of flocculation mechanism[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3270-3276.
Citation: Wei Shumei, Yang Zhaohui, Zeng Guangming, Huang Jing, Zhang Yuanyuan, Wang Like. Optimization of cadmium removal using CCD design by microbial flocculants and investigation of flocculation mechanism[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3270-3276.

微生物絮凝剂去除废水中Cd(Ⅱ)的CCD优化及絮凝机制

  • 1.  湖南大学环境科学与工程学院, 长沙 410082
  • 2.  环境生物与控制教育部重点实验室(湖南大学), 长沙 410082
基金项目:

国家自然科学基金资助项目(30970105,51078131)

国家"水体污染控制与治理"科技重大专项(2009ZX07212-001-02)

摘要: 应用CCD(中心复合设计)法研究了微生物絮凝剂去除废水中Cd(Ⅱ)的最佳条件组合,并根据傅里叶变换红外光谱与环境扫描电镜分析讨论了絮凝机制。CCD设计以Cd(Ⅱ)去除率为响应值,优化Cd(Ⅱ)初始浓度、MBFGA1投加量、溶液初始pH和反应时间4种因素。方差分析显示,模型F值为11.71,PR=0.9154,拟合模型极显著,Cd(Ⅱ)初始浓度、pH和反应时间为显著性因素。在最优化条件下:Cd(Ⅱ)初始浓度23.60 mg/L,MBFGA1投加量27.74 mg/L,pH为9.5,反应时间15.97 min,检测实验Cd(Ⅱ)去除率高于99.5%。傅里叶变换红外光谱图表明,絮凝剂分子上羧基、羟基、磷酸基等官能团参与了絮凝过程,并形成了氢键。结合环境扫描电镜图分析得出,MBFGA1的絮凝机制包括化学反应、吸附架桥、氢键和范德华力结合等作用。

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回