生物氧化磁黄铁矿产生铁离子

李杰, 朱琳, 李睿华. 生物氧化磁黄铁矿产生铁离子[J]. 环境工程学报, 2013, 7(7): 2424-2428.
引用本文: 李杰, 朱琳, 李睿华. 生物氧化磁黄铁矿产生铁离子[J]. 环境工程学报, 2013, 7(7): 2424-2428.
Li Jie, Zhu Lin, Li Ruihua. Production of iron ions from biooxidation of pyrrhotite[J]. Chinese Journal of Environmental Engineering, 2013, 7(7): 2424-2428.
Citation: Li Jie, Zhu Lin, Li Ruihua. Production of iron ions from biooxidation of pyrrhotite[J]. Chinese Journal of Environmental Engineering, 2013, 7(7): 2424-2428.

生物氧化磁黄铁矿产生铁离子

  • 基金项目:

    污染控制与资源化研究国家重点实验室开放基金

    国家自然科学基金资助项目(50978133)

  • 中图分类号: X751

Production of iron ions from biooxidation of pyrrhotite

  • Fund Project:
  • 摘要: 从广东云浮矿山酸性废水中富集获得氧化亚铁硫杆菌(Thiobacillus ferrooxidans),利用该氧化亚铁硫杆菌研究了反应时间、pH、温度、矿浆浓度和矿物粒度对磁黄铁矿生物氧化获得铁离子的影响。结果表明,在29℃,摇床转速200 r/min,10%接种量条件下,氧化亚铁硫杆菌可以明显促进磁黄铁矿的氧化,但反应后期有黄钾铁矾沉淀生成,不利于获得铁离子;控制溶液pH值为2.00,温度在29~36℃范围,可促进生物氧化磁黄铁矿获得铁离子;铁离子量随着矿浆浓度的增大和矿物粒度的减小而增加,优化的矿浆浓度和矿物粒径分别为6%和58 μm左右。
  • 加载中
  • [1] 赵玲,王荣锌,李官,等.矿山酸性废水处理及源头控制技术展望.金属矿山,2009,39(7):131-135 Zhao L., Wang R. X. Li G., et al. Processing of acid mine drainage and development prospect of source control technology. Metal Mine, 2009,39 (7):131-135(in Chinese)
    [2] Li Ruihua, Zhu Lin, Tao Tao, et al. Phosphorus removal performance of acid mine drainage from wastewater. Journal of Hazardous Materials, 2011, 190(1):669-676
    [3] Rao S. R., Gehr. R., Riendeau.M., et al. Acid mines drainage as a coagulant. Minerals Engineering, 1992, 5(9): 1011-1020
    [4] Menezes J. C. S. S., Silva R. A., Arce I. S., et al. Production of a poly-ferric sulphate chemical coagulant by selective precipitation of iron from acidic coal mine drainage. Mine Water and the Environment, 2009, 28(4): 311-314
    [5] Menezes J. C. S. S., Silva R. A., Arce I. S., et al. Production of a poly-alumino-iron sulphate coagulant by chemical precipitation of a coal mining acid drainage. Minerals Engineering, 2010, 23(3): 249-251
    [6] 李洪枚.细菌浸出含镍磁黄铁矿的研究现状与展望.湿法冶金,1999,18(3):8-12 Li H. M. The review on the present situation and expectation of the bacterial leaching of nickel-bearing pyrrhotite. Hydrometallurgy of China, 1999, 18(3):8-12(in Chinese)
    [7] 齐凤杰,冯雅丽,李浩然,等.低品位镍磁黄铁矿镍浸出特性及回收方法.北京科技大学学报,2009,33(9):1066-1070 Qi F. J., Feng Y. L., Li Hao, et al. Leaching characteristics and recovery method of nickel from low-grade nickel-pyrrhotite. Journal of University of Science and Technology Beijing, 2009, 33(9):1066-1070(in Chinese)
    [8] 宾凌勇,李荣,王永平,等.生物氧化工艺在阿希金矿的应用效果.新疆有色金属,2008,40(2):31-34 Bing L. Y., Li R., Wang Y. P., et al. Application results of bio-oxidation process in axi gold mine. Nonferrous Metals Xinjiang, 2008, 40(2):31-34(in Chinese)
    [9] Watling H. R., Elliot A. D., Maley M., et al. Leaching of a low-grade, copper-nickel sulfide ore.1.Key parameters impacting on Cu recovery during column bioleaching. Hydrometallurgy, 2009, 97(3):204-212
    [10] Santos L. R. G., Barbosa A. F., Souza A. D., et al. Nickel sulphide oxidation by mesophile bacteria. Rem-Revista Escola De Mina, 2008, 61 (1):9-46
    [11] Cruz F. L. S., Oliveira V. A., Guimaraes D., et al. High-temperature bioleaching of nickel sulfides: Thermodynamic and kinetic and implication. Hydrometallurgy, 2010, 105 (1): 103-109
    [12] Ubaldini S., Veglio F., Toro L., et al. Gold recovery from a refractory pyrrhotite ore by biooxidation.International Journal of Mineral Processing, 2000, 60(3): 247-262
    [13] Mason L. J., Rice N. M. The adaptation of Thiobacillus ferrooxidans for the treatment of nickel-iron sulphide concentrates.Minerals Engineering, 2002, 15(11):795-808
    [14] Li H. M., Ke J. J. Influence of Cu2+ and Mg2+ on the growth and activity of Ni2+ adapted Thiobacillus ferrooxidans.Minerals Engineering, 2001, 14 (1)113-116
    [15] Tong L. L., Jiang M. F.,Yang H. Y.,et al. Dynamic corrosion of copper-nickel sulfide by Acidithiobacillus ferrooxidans. Transactions of Nonferrous Metals Society of China, 2009, 19 (2):438-445
    [16] 朱琳,李睿华.营养成分对Fe2+生物氧化的影响.环境工程学报,2012,6(6):1901-1906 Zhu L., Li R. H. The effects of nutrients on ferrous ion biooxidation. Chinese Journal of Environment Engineering, 2012, 6(6):1901-1906(in Chinese)
    [17] 国家环境保护总局.水和废水监测分析方法(第4版).北京:中国环境科学出版社,2002
    [18] 张冬艳. 氧化亚铁硫杆菌生长量的染色测定法. 内蒙古医学院学报, 1996, 18(2):100-102 Zhang D. L. Determination of Thiobacillus ferrooxidans by staining method.Acta Academiae Mine Medicinae Nei Mongol,1996,18(2):100-102(in Chinese)
    [19] 刘晓荣,姜圣才.磁黄铁矿的生物浸出研究.矿冶工程,2006,26(6):39-42 Liu X. R., Jing S. C. Bioleaching of pyrrhotite and pyrite using Thiobacillus ferrooxidans. Mining and Metallurgical Engineering, 2006, 26(6):39-42 (in Chinese)
    [20] 蒋磊.氧化亚铁硫杆菌对黄铁矿、黄铜矿、磁黄铁矿和方铅矿的生物氧作用研究.科学通报,2007,52(15): 1802-1813 Jing L. Bio-oxidation of pyrite, chalcopyrite, pyrrhotite and galena by Acidithiobacillus ferrooxidans. Chinese Science Bulletin, 2007, 52(15):1802-1813 (in Chinese)
    [21] Axel Schippers, Wolfgang Sand. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via Thiosulfate or via polysulfide and sulfur. Applied and Environmental Microbiology, 1999,65(1): 319-321
    [22] Nelson Belzile, Chen Y. W., Cai M. F., et al. A review on pyrrhotite oxidation. Journal of Geochemical Exploration, 2004, 84(2):65-76
    [23] Michael P. Janzen, Ronald V. Nicholson, Jeno M. Scharer. Pyrrhotite reaction kinetics: Reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution. Geochimica et Cosmochimica Acta, 2000, 64(9): 1511-1522
    [24] 蒋磊,周怀阳,彭晓彤.广东云浮硫铁矿山氧化亚铁硫杆菌的分离及生长规律研究.高校地质学报,2006,12(1): 93-97 Jing L., Zhou H. Y., Peng X. T. Isolation of a strain of Acidithiobacillus ferrooxidans from Yunfu sulfide mine in Guangdong Province and studies on its growth rule. Geological Journal of China Universities, 2006, 12(1):93-97(in Chinese)
  • 加载中
计量
  • 文章访问数:  2362
  • HTML全文浏览数:  1615
  • PDF下载数:  856
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-03-20
  • 刊出日期:  2013-07-18
李杰, 朱琳, 李睿华. 生物氧化磁黄铁矿产生铁离子[J]. 环境工程学报, 2013, 7(7): 2424-2428.
引用本文: 李杰, 朱琳, 李睿华. 生物氧化磁黄铁矿产生铁离子[J]. 环境工程学报, 2013, 7(7): 2424-2428.
Li Jie, Zhu Lin, Li Ruihua. Production of iron ions from biooxidation of pyrrhotite[J]. Chinese Journal of Environmental Engineering, 2013, 7(7): 2424-2428.
Citation: Li Jie, Zhu Lin, Li Ruihua. Production of iron ions from biooxidation of pyrrhotite[J]. Chinese Journal of Environmental Engineering, 2013, 7(7): 2424-2428.

生物氧化磁黄铁矿产生铁离子

  • 1. 南京大学环境学院污染控制与资源化研究国家重点实验室, 南京 210046
基金项目:

污染控制与资源化研究国家重点实验室开放基金

国家自然科学基金资助项目(50978133)

摘要: 从广东云浮矿山酸性废水中富集获得氧化亚铁硫杆菌(Thiobacillus ferrooxidans),利用该氧化亚铁硫杆菌研究了反应时间、pH、温度、矿浆浓度和矿物粒度对磁黄铁矿生物氧化获得铁离子的影响。结果表明,在29℃,摇床转速200 r/min,10%接种量条件下,氧化亚铁硫杆菌可以明显促进磁黄铁矿的氧化,但反应后期有黄钾铁矾沉淀生成,不利于获得铁离子;控制溶液pH值为2.00,温度在29~36℃范围,可促进生物氧化磁黄铁矿获得铁离子;铁离子量随着矿浆浓度的增大和矿物粒度的减小而增加,优化的矿浆浓度和矿物粒径分别为6%和58 μm左右。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回