[1]
|
Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238 (5358): 37-38
|
[2]
|
李川, 李兆华, 柳松, 等. 氮掺杂氧化钛的简易制备及可见光催化活性的研究. 环境工程学报, 2009, 3 (9): 1714-1718 Li Chuan, Li Zhaohua, Liu Song, et al. A simple method to prepare nitrogen-doped titania oxides with high photocatalytic activity under visible light. Chinese Journal of Environmental Engineering, 2009, 3 (9): 1714-1718(in Chinese)
|
[3]
|
Hong X. T., Wang Z. P., Cai W. M., et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem. Mater., 2005, 17 (6): 1548-1552
|
[4]
|
Su W. Y., Zhang Y. F., Li Z. H., et al. Multivalency iodine doped TiO2: Preparation, characterization, theoretical studies, and visible-light photocatalysis. Langmuir, 2008, 24 (7): 3422-3428
|
[5]
|
Song S., Tu J. J., Xu L. J., et al. Preparation of a titanium dioxide photocatalyst codoped with cerium and iodine and its performance in the degradation of oxalic acid. Chemosphere, 2008, 73 (9): 1401-1406
|
[6]
|
Song S., Wang C., Hong F. Y., et al. Gallium-and iodine-co-doped titanium dioxide for photocatalytic degradation of 2-chlorophenol in aqueous solution: Role of gallium. Appl. Surf. Sci., 2011, 257 (8): 3427-3432
|
[7]
|
Zhou L., Deng J., Zhao Y. B., et al. Preparation and characterization of N-I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation. Mater. Chem. Phys., 2009, 117 (2-3): 522-527
|
[8]
|
Yoon S. H., Oh S. E., Yang J. E., et al. TiO2 photocatalytic oxidation mechanism of As(Ⅲ). Environ. Sci. Technol., 2009, 43 (3): 864-869
|
[9]
|
Salvador P. On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 aqueous suspensions: A revision in the light of the electronic structure of adsorbed water. J. Phys. Chem. C, 2007, 111 (45): 17038-17043
|
[10]
|
Liu G., Chen Z. G., Dong C. L., et al. Visible light photo-catalyst: Iodine-doped mesoporous titania with a bicrystal-line framework. J. Phys. Chem. B, 2006, 110 (42): 20823-20828
|
[11]
|
Wang W. A., Shi Q., Wang Y. P., et al. Preparation and characterization of iodine-doped mesoporous TiO2 by hydrothermal method. Appl. Surf. Sci., 2011, 257 (8): 3688-3696
|
[12]
|
Hanaor D. A. H., Sorrell C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci., 2011, 46 (4): 855-874
|
[13]
|
Hurum D. C., Agrios A. G., Gray K. A., et al. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B, 2003, 107 (19): 4545-4549
|
[14]
|
Gopal M., Moberly Chan W. J., De Jonghe L. C. Room temperature synthesis of crystalline metal oxides. J. Mater. Sci., 1997, 32(22):6001-6008
|
[15]
|
Stone V. F., Davis R. J. Synthesis, characterization, and photocatalytic activity of titania and niobia mesoporous molecular sieves. Chem. Mater., 1998, 10 (5): 1468-1474
|
[16]
|
Yu J. G., Zhou M. H., Cheng B., et al. Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders. J. Mol. Catal. A: Chem., 2006, 246 (1-2): 176-184
|
[17]
|
Hamadanian M., Reisi-Vanani A., Majedi A. Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu,S-codoped TiO2 nanoparticles. Appl. Surf. Sci., 2010, 256 (6): 1837-1844
|
[18]
|
Sahu D. R., Hong L. Y., Wang S. C., et al. Synthesis, analysis and characterization of ordered mesoporous TiO2/SBA-15 matrix: Effect of calcination temperature. Micropor. Mesopor. Mat., 2009, 117 (3): 640-649
|
[19]
|
Hamadanian M., Reisi-Vanani A., Majedi A. Preparation and characterization of S-doped TiO2 nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity. Mater. Chem. Phys., 2009, 116 (2-3): 376-382
|
[20]
|
Martin S. T., Lee A. T., Hoffmann M. R. Chemical mechanism of inorganic oxidants in the TiO2/UV process increased rates of degradation of chlorinated hydrocarbons. Environ. Sci. Technol., 1995, 29 (10): 2567-2573
|
[21]
|
Yoon S. H., Lee J. H. Oxidation mechanism of As (Ⅲ) in the UV/TiO2 system: Evidence for a direct hole oxidation mechanism. Environ. Sci. Technol., 2005, 39 (24): 9695-9701
|
[22]
|
Herramann M., Kaluza U., Boehm H. P. Uber die Chemie der Oberflache des titandioxids. IV. Austausch von hydroxidionen gegen fluoridionen. Z. Anorg. Allg. Chem., 1970, 372 (3): 308-313
|
[23]
|
Chen Y. X., Yang S. Y., Wang K., et al. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. J. Photochem. Photobiol. A, 2005, 172 (1): 47-54
|