可见光响应的碘掺杂TiO2光催化剂的制备及其作用机理

宋爽, 洪甜蜜, 方慧莹, 何志桥, 陈建孟. 可见光响应的碘掺杂TiO2光催化剂的制备及其作用机理[J]. 环境工程学报, 2013, 7(1): 1-6.
引用本文: 宋爽, 洪甜蜜, 方慧莹, 何志桥, 陈建孟. 可见光响应的碘掺杂TiO2光催化剂的制备及其作用机理[J]. 环境工程学报, 2013, 7(1): 1-6.
Song Shuang, Hong Tianmi, Fang Huiying, He Zhiqiao, Chen Jianmeng. Preparation and photocatalytic mechanism of visible-light-driven iodine doped titanium dioxide photocatalyst[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 1-6.
Citation: Song Shuang, Hong Tianmi, Fang Huiying, He Zhiqiao, Chen Jianmeng. Preparation and photocatalytic mechanism of visible-light-driven iodine doped titanium dioxide photocatalyst[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 1-6.

可见光响应的碘掺杂TiO2光催化剂的制备及其作用机理

  • 基金项目:

    国家自然科学基金资助项目(21076196)

    国家"973"重点基础研究发展规划项目(2009CB421603)

    浙江省自然科学基金重点项目(Z5080207)

  • 中图分类号: O643

Preparation and photocatalytic mechanism of visible-light-driven iodine doped titanium dioxide photocatalyst

  • Fund Project:
  • 摘要: 以钛酸四丁酯为前驱物制备了碘掺杂TiO2催化剂(I-TiO2),考察了碘掺杂量、水解水量、水解温度和煅烧温度对催化剂物理化学性质与光催化活性的影响。X射线衍射(XRD)结果显示,I-TiO2由锐钛矿相和金红石相组成。在可见光照射下,通过降解水溶液中的苯酚评价了I-TiO2催化剂的光催化性能。结果表明,在水解温度为20℃,水解水量为300 mL,煅烧温度为400℃,碘钛比(摩尔比)为20%的制备条件下,催化剂显示了最优的光催化活性。通过向反应体系中引入自由基捕获剂及降低溶解氧,证实光催化降解苯酚主要由光生空穴或吸附的羟基自由基引发。
  • 加载中
  • [1] Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238 (5358): 37-38
    [2] 李川, 李兆华, 柳松, 等. 氮掺杂氧化钛的简易制备及可见光催化活性的研究. 环境工程学报, 2009, 3 (9): 1714-1718 Li Chuan, Li Zhaohua, Liu Song, et al. A simple method to prepare nitrogen-doped titania oxides with high photocatalytic activity under visible light. Chinese Journal of Environmental Engineering, 2009, 3 (9): 1714-1718(in Chinese)
    [3] Hong X. T., Wang Z. P., Cai W. M., et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem. Mater., 2005, 17 (6): 1548-1552
    [4] Su W. Y., Zhang Y. F., Li Z. H., et al. Multivalency iodine doped TiO2: Preparation, characterization, theoretical studies, and visible-light photocatalysis. Langmuir, 2008, 24 (7): 3422-3428
    [5] Song S., Tu J. J., Xu L. J., et al. Preparation of a titanium dioxide photocatalyst codoped with cerium and iodine and its performance in the degradation of oxalic acid. Chemosphere, 2008, 73 (9): 1401-1406
    [6] Song S., Wang C., Hong F. Y., et al. Gallium-and iodine-co-doped titanium dioxide for photocatalytic degradation of 2-chlorophenol in aqueous solution: Role of gallium. Appl. Surf. Sci., 2011, 257 (8): 3427-3432
    [7] Zhou L., Deng J., Zhao Y. B., et al. Preparation and characterization of N-I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation. Mater. Chem. Phys., 2009, 117 (2-3): 522-527
    [8] Yoon S. H., Oh S. E., Yang J. E., et al. TiO2 photocatalytic oxidation mechanism of As(Ⅲ). Environ. Sci. Technol., 2009, 43 (3): 864-869
    [9] Salvador P. On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 aqueous suspensions: A revision in the light of the electronic structure of adsorbed water. J. Phys. Chem. C, 2007, 111 (45): 17038-17043
    [10] Liu G., Chen Z. G., Dong C. L., et al. Visible light photo-catalyst: Iodine-doped mesoporous titania with a bicrystal-line framework. J. Phys. Chem. B, 2006, 110 (42): 20823-20828
    [11] Wang W. A., Shi Q., Wang Y. P., et al. Preparation and characterization of iodine-doped mesoporous TiO2 by hydrothermal method. Appl. Surf. Sci., 2011, 257 (8): 3688-3696
    [12] Hanaor D. A. H., Sorrell C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci., 2011, 46 (4): 855-874
    [13] Hurum D. C., Agrios A. G., Gray K. A., et al. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B, 2003, 107 (19): 4545-4549
    [14] Gopal M., Moberly Chan W. J., De Jonghe L. C. Room temperature synthesis of crystalline metal oxides. J. Mater. Sci., 1997, 32(22):6001-6008
    [15] Stone V. F., Davis R. J. Synthesis, characterization, and photocatalytic activity of titania and niobia mesoporous molecular sieves. Chem. Mater., 1998, 10 (5): 1468-1474
    [16] Yu J. G., Zhou M. H., Cheng B., et al. Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders. J. Mol. Catal. A: Chem., 2006, 246 (1-2): 176-184
    [17] Hamadanian M., Reisi-Vanani A., Majedi A. Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu,S-codoped TiO2 nanoparticles. Appl. Surf. Sci., 2010, 256 (6): 1837-1844
    [18] Sahu D. R., Hong L. Y., Wang S. C., et al. Synthesis, analysis and characterization of ordered mesoporous TiO2/SBA-15 matrix: Effect of calcination temperature. Micropor. Mesopor. Mat., 2009, 117 (3): 640-649
    [19] Hamadanian M., Reisi-Vanani A., Majedi A. Preparation and characterization of S-doped TiO2 nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity. Mater. Chem. Phys., 2009, 116 (2-3): 376-382
    [20] Martin S. T., Lee A. T., Hoffmann M. R. Chemical mechanism of inorganic oxidants in the TiO2/UV process increased rates of degradation of chlorinated hydrocarbons. Environ. Sci. Technol., 1995, 29 (10): 2567-2573
    [21] Yoon S. H., Lee J. H. Oxidation mechanism of As (Ⅲ) in the UV/TiO2 system: Evidence for a direct hole oxidation mechanism. Environ. Sci. Technol., 2005, 39 (24): 9695-9701
    [22] Herramann M., Kaluza U., Boehm H. P. Uber die Chemie der Oberflache des titandioxids. IV. Austausch von hydroxidionen gegen fluoridionen. Z. Anorg. Allg. Chem., 1970, 372 (3): 308-313
    [23] Chen Y. X., Yang S. Y., Wang K., et al. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. J. Photochem. Photobiol. A, 2005, 172 (1): 47-54
  • 加载中
计量
  • 文章访问数:  2173
  • HTML全文浏览数:  1004
  • PDF下载数:  1424
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-04-01
  • 刊出日期:  2013-01-16
宋爽, 洪甜蜜, 方慧莹, 何志桥, 陈建孟. 可见光响应的碘掺杂TiO2光催化剂的制备及其作用机理[J]. 环境工程学报, 2013, 7(1): 1-6.
引用本文: 宋爽, 洪甜蜜, 方慧莹, 何志桥, 陈建孟. 可见光响应的碘掺杂TiO2光催化剂的制备及其作用机理[J]. 环境工程学报, 2013, 7(1): 1-6.
Song Shuang, Hong Tianmi, Fang Huiying, He Zhiqiao, Chen Jianmeng. Preparation and photocatalytic mechanism of visible-light-driven iodine doped titanium dioxide photocatalyst[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 1-6.
Citation: Song Shuang, Hong Tianmi, Fang Huiying, He Zhiqiao, Chen Jianmeng. Preparation and photocatalytic mechanism of visible-light-driven iodine doped titanium dioxide photocatalyst[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 1-6.

可见光响应的碘掺杂TiO2光催化剂的制备及其作用机理

  • 1. 浙江工业大学生物与环境工程学院,杭州 310032
基金项目:

国家自然科学基金资助项目(21076196)

国家"973"重点基础研究发展规划项目(2009CB421603)

浙江省自然科学基金重点项目(Z5080207)

摘要: 以钛酸四丁酯为前驱物制备了碘掺杂TiO2催化剂(I-TiO2),考察了碘掺杂量、水解水量、水解温度和煅烧温度对催化剂物理化学性质与光催化活性的影响。X射线衍射(XRD)结果显示,I-TiO2由锐钛矿相和金红石相组成。在可见光照射下,通过降解水溶液中的苯酚评价了I-TiO2催化剂的光催化性能。结果表明,在水解温度为20℃,水解水量为300 mL,煅烧温度为400℃,碘钛比(摩尔比)为20%的制备条件下,催化剂显示了最优的光催化活性。通过向反应体系中引入自由基捕获剂及降低溶解氧,证实光催化降解苯酚主要由光生空穴或吸附的羟基自由基引发。

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回