核桃壳粉对水溶液中Pb2+的吸附

许振, 李云春, 姜友军, 孟令银. 核桃壳粉对水溶液中Pb2+的吸附[J]. 环境工程学报, 2012, 6(12): 4504-4512.
引用本文: 许振, 李云春, 姜友军, 孟令银. 核桃壳粉对水溶液中Pb2+的吸附[J]. 环境工程学报, 2012, 6(12): 4504-4512.
Xu Zhen, Li Yunchun, Jiang Youjun, Meng Lingyin. Adsorption of Pb2+ from aqueous solution by walnut shell powder[J]. Chinese Journal of Environmental Engineering, 2012, 6(12): 4504-4512.
Citation: Xu Zhen, Li Yunchun, Jiang Youjun, Meng Lingyin. Adsorption of Pb2+ from aqueous solution by walnut shell powder[J]. Chinese Journal of Environmental Engineering, 2012, 6(12): 4504-4512.

核桃壳粉对水溶液中Pb2+的吸附

  • 基金项目:

    四川省教育厅科研重点项目(09ZA062)

    四川农业大学"大学生创新性实验计划"基金(111062632)

  • 中图分类号: X703

Adsorption of Pb2+ from aqueous solution by walnut shell powder

  • Fund Project:
  • 摘要: 实验通过间歇吸附方式研究了核桃壳粉对水溶液中Pb2+的吸附特性,探讨了核桃壳粉粒径及用量、溶液pH、Pb2+初始浓度等参数对吸附的影响,并讨论了吸附过程的热力学和动力学特征。结果表明,核桃壳粉对Pb2+吸附的最佳pH为5.0,去除率随吸附剂粒径的减小、用量的增加、Pb2+初始浓度的减小而增加。优化实验条件下,0~0.3 mm 15 g/L的吸附剂在298 K时,对pH=5的50 mL 50 mg/L Pb2+溶液的去除率达96.98%。核桃壳粉对Pb2+的吸附等温线符合Sips模型,在283、293和303 K的最大吸附量分别为18.25、18.27和20.94 mg/g。吸附过程是放热的、混乱度减小的自发过程,且符合准二级动力学模型。吸附速率常数随温度升高而减小,在293和303 K时分别在90和120 min基本达到平衡。结合FTIR和SEM手段发现核桃壳对Pb2+的吸附以物理吸附为主,同时包括离子交换、螯合等化学吸附以及颗粒内扩散步骤,是一个复杂的过程。
  • 加载中
  • [1] Singh C.K., Sahu J.N., Mahalik K.K., et al. Studies on the removal of Pb(II) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid. J. Hazard. Mater., 2008,153(1-2):221-228
    [2] Saadat S., Karimi-Jashni A. Optimization of Pb(II) adsorption onto modified walnut shells using factorial design and simplex methodologies. Chem. Eng. J., 2011,173(3):743-749
    [3] Bhattacharyya K.G., Sharma A. Adsorption of Pb(II) from aqueous solution by Azadirachta indica (Neem) leaf powder. J. Hazard. Mater., 2004,113(1-3):97-109
    [4] Sud D., Mahajan G., Kaur M.P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—A review. Bioresource Technol., 2008,99(14):6017-6027
    [5] Pehlivan E., Altun T. Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J. Hazard. Mater., 2008,155(1-2):378-384
    [6] Vaghetti J. C. P., Lima E.C., Royer B., et al. Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions. J. Hazard. Mater., 2009,162(1):270-280
    [7] Wang X.S., Li Z.Z., Tao S.R. Removal of chromium (VI) from aqueous solution using walnut hull. J. Environ. Manage., 2009,90(2):721-729
    [8] Altun T., Pehlivan E. Removal of Cr(VI) from aqueous solutions by modified walnut shells. Food Chem., 2012,132(2):693-700
    [9] Kazemipour M., Ansari M., Tajrobehkar S., et al. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. J. Hazard. Mater., 2008,150(2):322-327
    [10] 李荣华, 张院民, 张增强, 等. 农业废弃物核桃壳粉对Cr(Ⅵ)的吸附特征研究. 农业环境科学学报, 2009,28(8):1693-1700 Li R. H., Zhang Y. M., Zhang Z. Q., et al. The characteristics of Cr(Ⅵ) absorbed by walnuts shell powder. Journal of Agro-Environment Science, 2009,28(8):1693-1700(in Chinese)
    [11] Rafatullah M., Sulaiman O., Hashim R., et al. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater., 2010,177(1-3):70-80
    [12] Ahmadpour A., Tahmasbi M., Bastami T.R., et al. Rapid removal of cobalt ion from aqueous solutions by almond green hull. J. Hazard. Mater., 2009,166(2-3):925-930
    [13] Farooq U., Kozinski J.A., Khan M.A., et al. Biosorption of heavy metal ions using wheat based biosorbents—A review of the recent literature. Bioresource Technol., 2010,101(14):5043-5053
    [14] 郑志锋, 邹局春, 花勃, 等. 核桃壳化学组分的研究. 西南林学院学报, 2006,26(2):33-36 Zheng Z.F., Zou J.C., Hua B., et al. Study on the constituents of walnut shell. Journal of Southwest Forestry College, 2006,26(2):33-36(in Chinese)
    [15] Ding Y., Jing D.B., Gong H.L., et al. Biosorption of aquatic cadmium(II) by unmodified rice straw. Bioresource Technol., 2012,114:20-25
    [16] 周丽云. 有机化学中的几个质子化问题. 广西师范大学学报(自然科学版), 2003,21(Z1):258-259
    [17] Witek-Krowiak A., Szafran R.G., Modelski S. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination, 2011,265(1-3):126-134
    [18] Miretzky P., Cirelli A.F. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. J. Hazard. Mater., 2010,180(1-3):1-19
    [19] Yao Z.Y., Qi J.H., Wang L.H. Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell. J. Hazard. Mater., 2010,174(1-3):137-143
    [20] Akar S.T., Gorgulu A., Anilan B., et al. Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albus: Batch and dynamic flow studies. J. Hazard. Mater., 2009,165(1-3):126-133
    [21] Anwar J., Shafique U., Zaman W.U., et al. Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresource Technol., 2010,101(6):1752-1755
    [22] Blázquez G., Martín-Lara M.A., Dionisio-Ruiz E., et al. Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark. J. Ind. Eng. Chem., 2011,17(5-6):824-833
    [23] Aydln H., Bulut Y., Yerlikaya C. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage., 2008,87(1):37-45
    [24] Rao R.A.K., Ikram S. Sorption studies of Cu(II) on gooseberry fruit (emblica officinalis) and its removal from electroplating wastewater. Desalination, 2011,277(1-3):390-398
    [25] Pehlivan E., Altun T., Parlaylcl S. Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions. J. Hazard. Mater., 2009,164(2-3):982-986
    [26] Jain M., Garg V.K., Kadirvelu K. Equilibrium and kinetic studies for sequestration of Cr(VI) from simulated wastewater using sunflower waste biomass. J. Hazard. Mater., 2009,171(1-3):328-334
    [27] Gupta S., Babu B.V. Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. Chem. Eng. J., 2009,150(2-3):352-365
    [28] 张蕾, 刘雪岩, 姜晓庆, 等. 纳米TiO2对钼(Ⅵ)的吸附性能. 中国有色金属学报, 2010,20(2):301-307 Zhang L., Liu X.Y., Jiang X.Q., et al. Adsorption properties of nano-TiO2 for Mo(Ⅵ). The Chinese Journal of Nonferrous Metals, 2010,20(2):301-307(in Chinese)
    [29] 献彩, 沈文霞, 姚天扬, 等. 物理化学下册(第5版). 北京: 高等教育出版社, 2005
    [30] 苑雅萍, 赵洪云, 秦香芹, 等. 山核桃壳化学成分的研究. 黑龙江医药, 2006,19(1):33-34 Yuan Y.P., Zhao H.Y., Qin X.Q., et al. Study on components in the shell of the walnut. Heilongjiang Medicine Journal, 2006,19(1):33-34(in Chinese)
  • 加载中
计量
  • 文章访问数:  2211
  • HTML全文浏览数:  970
  • PDF下载数:  1614
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-07-28
  • 刊出日期:  2012-12-07
许振, 李云春, 姜友军, 孟令银. 核桃壳粉对水溶液中Pb2+的吸附[J]. 环境工程学报, 2012, 6(12): 4504-4512.
引用本文: 许振, 李云春, 姜友军, 孟令银. 核桃壳粉对水溶液中Pb2+的吸附[J]. 环境工程学报, 2012, 6(12): 4504-4512.
Xu Zhen, Li Yunchun, Jiang Youjun, Meng Lingyin. Adsorption of Pb2+ from aqueous solution by walnut shell powder[J]. Chinese Journal of Environmental Engineering, 2012, 6(12): 4504-4512.
Citation: Xu Zhen, Li Yunchun, Jiang Youjun, Meng Lingyin. Adsorption of Pb2+ from aqueous solution by walnut shell powder[J]. Chinese Journal of Environmental Engineering, 2012, 6(12): 4504-4512.

核桃壳粉对水溶液中Pb2+的吸附

  • 1. 四川农业大学生命科学与理学院,雅安 625014
基金项目:

四川省教育厅科研重点项目(09ZA062)

四川农业大学"大学生创新性实验计划"基金(111062632)

摘要: 实验通过间歇吸附方式研究了核桃壳粉对水溶液中Pb2+的吸附特性,探讨了核桃壳粉粒径及用量、溶液pH、Pb2+初始浓度等参数对吸附的影响,并讨论了吸附过程的热力学和动力学特征。结果表明,核桃壳粉对Pb2+吸附的最佳pH为5.0,去除率随吸附剂粒径的减小、用量的增加、Pb2+初始浓度的减小而增加。优化实验条件下,0~0.3 mm 15 g/L的吸附剂在298 K时,对pH=5的50 mL 50 mg/L Pb2+溶液的去除率达96.98%。核桃壳粉对Pb2+的吸附等温线符合Sips模型,在283、293和303 K的最大吸附量分别为18.25、18.27和20.94 mg/g。吸附过程是放热的、混乱度减小的自发过程,且符合准二级动力学模型。吸附速率常数随温度升高而减小,在293和303 K时分别在90和120 min基本达到平衡。结合FTIR和SEM手段发现核桃壳对Pb2+的吸附以物理吸附为主,同时包括离子交换、螯合等化学吸附以及颗粒内扩散步骤,是一个复杂的过程。

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回