山阴地区浅层沉积物中砷的分布特征及吸附行为

邓天天, 李义连, 田蓉. 山阴地区浅层沉积物中砷的分布特征及吸附行为[J]. 环境工程学报, 2012, 6(11): 4006-4014.
引用本文: 邓天天, 李义连, 田蓉. 山阴地区浅层沉积物中砷的分布特征及吸附行为[J]. 环境工程学报, 2012, 6(11): 4006-4014.
Deng Tiantian, Li Yilian, Tian Rong. Distribution characteristics and adsorption behavior of arsenic on shallow sediments in Shanyin region[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 4006-4014.
Citation: Deng Tiantian, Li Yilian, Tian Rong. Distribution characteristics and adsorption behavior of arsenic on shallow sediments in Shanyin region[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 4006-4014.

山阴地区浅层沉积物中砷的分布特征及吸附行为

  • 基金项目:

    国家"863"高技术研究发展计划项目(2007AA06Z333)

  • 中图分类号: X142

Distribution characteristics and adsorption behavior of arsenic on shallow sediments in Shanyin region

  • Fund Project:
  • 摘要: 本文通过室内实验的方法,对山阴高砷地下水地区不同浅层沉积物中砷的分布特征及吸附行为进行了研究。结果表明:研究区内饮用水浓度高,病情重。浅层承压含水层中的砷含量平均值为290 mg/kg,在17.4~22.7 m段的平均值达643 mg/kg,22.7~25.8 m段的平均值为115 mg/kg,25.8 m以下的平均值为212 mg/kg。As(Ⅲ)、As(Ⅴ)在4种沉积物表面上的动力学吸附过程均符合Lagergren模型,相关系数达0.9以上。沉积物对As(Ⅴ)的吸附速率较As(Ⅲ)快,但As(Ⅲ)在沉积物中的吸附比As(Ⅴ)稳定。4种含水层介质对As(Ⅲ)、As(Ⅴ)的吸附速率依次为粘土>亚粘土>粉砂>中砂。吸附动力学吸附过程符合二级速率方程。Freundlich方程和Langmuir方程对As(Ⅲ)、As(Ⅴ)的吸附过程拟合性最佳,相关系数均在0.95以上。沉积物对As(Ⅲ)吸附的最佳pH在7~8范围内,As(Ⅴ)吸附的最佳pH在5~6左右。此外,沉积物对砷的吸附性能主要受沉积物颗粒大小、矿物成分等因素综合作用的影响,而非各组分吸附砷的简单加和。
  • 加载中
  • [1] 郭华明,王焰新,李永敏. 山阴水砷中毒区地下水砷的富集因素分析. 环境科学, 2003, 24(4): 60-67 Guo H. M., Wang Y. X., Li Y. M. Analysis of factors resulting in anomalous arsenic concentration in groundwaters of Shanyin, Shanxi Province. Environmental Science, 2003, 24(4): 60-67 (in Chinese)
    [2] 陈云嫩,柴立元. 砷在地下水环境中的迁移转化.有色金属, 2008, 60 (1):109-112 Chen Y. N., Chai L. Y. Migration and transformation of arsenic in groundwater. Nonferrous Metals, 2008, 60(1): 109-112 (in Chinese)
    [3] Fendorf S., Eick M. J., Grossl P., et al. Arsenate and chromate retention mechanisms on goethite. Surface structure. Environmental Science & Technology, 1997, 31(2): 315-320
    [4] Waychunas G., Rea B., Fuller C., et al. Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochemica et Cosmochmica Acta, 1993, 57(10): 2251-2269
    [5] Ng J.C., Wang J., Shraim A. A global health problem caused by arsenic from natural sources. Chemosphere, 2003, 52(9): 353-359
    [6] 罗磊,张淑贞,马义兵. 土壤中砷吸附机理及其影响因素研究进展. 土壤, 2008, 40(3): 351-359 Luo L., Zhang S. Z., Ma Y. B. Advance in research on sorption and its affecting factors in soils. Soils, 2008, 40(3): 351-359 (in Chinese)
    [7] Goldberg S. G., Robert A. Determination of inorganic arsenic (Ⅲ) and arsenic (Ⅲ plus V) using automated hydride-generation atomic-absorption spectrometry. Soil Science Society of America Journal, 1988, 52(2): 536-537
    [8] Goldberg S., Johnston C. T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science, 2001, 234(1): 204-216
    [9] 丁爱中,杨双喜,张宏达. 地下水砷污染分析. 吉林大学学报(地球科学), 2007, 37(2): 319-325 Ding A. Z., Yang S. X., Zhang H. D. Analysis on arsenic contamination in groundwater. Journal of Jilin University (Earth Science Edition), 2007, 37(2): 320-325 (in Chinese)
    [10] Chien S., Clayton W. Application of elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal, 1980, 44(2): 265-268
    [11] Lin Z., Puls R. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environmental Geology, 2000, 39(7): 753-759
    [12] 陈静,王学军,朱立军. 砷在贵州地区红土表面吸附和解吸的动力学研究. 农业环境科学学报, 2003, 22(6): 697-699 Chen J., Wang X. J., Zhu L. J. Kinetics of adsorption and desorption of arsenic in red soil in Guizhou area. Journal of Agro-Environment Science, 2003, 22(6): 697-699 (in Chinese)
    [13] 翟辉,孙红霞,李义连. 微量 As(Ⅲ)在粘土矿物上的吸附模拟实验研究.农业环境科学学报.2008,27(6):2246-2250 Zhai H., Sun H. X., Li Y. L.The study for sorption of trace arsenite on clay minerals.Journal of Agro-Environment Science, 2008,22(6):697-699 (in Chinese)
    [14] Hingston F. J. A review of anion adsorption. Adsorption of Inorganics at Solid-Liquid Interfaces. Ann Arbor: Ann Arbor Science, 1981: 51-90
    [15] 邹强,刘芳,杨剑虹.紫色土中砷, 磷的吸附-解吸和竞争吸附. 应用生态学报, 2009, 20(06): 1383-1389 Zou Q., Liu F., Yang J. H. Adsorption desorption and competitive adsorption of arsenic and phosphorus in purple soil. Chinese Journal of Applied Ecology, Jun. 2009, 20(6): 1383-1389 (in Chinese)
    [16] Richardson E. M. Retention of three insecticides on different size soil particles suspended in water. Soil Science Society of America Journal, 1971, 35(6): 884
    [17] Boucher F. R., Lee F. G. Adsorption of lindane and dieldrin pesticides on unconsolidated aquifer sands. Environmental Science & Technology, 1972, 6(6): 538-543
    [18] Gallegos T. J., Han Y. S., Hayes K. F. Model predictions of realgar precipitation by reaction of As (Ⅲ) with synthetic mackinawite under anoxic conditions. Environmental Science & Technology, 2008, 42(24): 9338-9343
    [19] Rafe M. E., Grossl M. Adsorption of arsenate (Ⅴ) and arsenite (Ⅲ) on goethite in the presence and absence of dissolved organic carbon. Soil Science Society of America Journal, 2001, 65(6): 1115-1122
    [20] Saada A., Breeze D., Crouzet C., et al. Adsorption of arsenic (Ⅴ) on kaolinite and on kaolinite-humic acid complexes: Role of humic acid nitrogen groups. Chemosphere, 2003, 51(8): 757-763
  • 加载中
计量
  • 文章访问数:  1895
  • HTML全文浏览数:  898
  • PDF下载数:  1787
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-11-25
  • 刊出日期:  2012-11-09
邓天天, 李义连, 田蓉. 山阴地区浅层沉积物中砷的分布特征及吸附行为[J]. 环境工程学报, 2012, 6(11): 4006-4014.
引用本文: 邓天天, 李义连, 田蓉. 山阴地区浅层沉积物中砷的分布特征及吸附行为[J]. 环境工程学报, 2012, 6(11): 4006-4014.
Deng Tiantian, Li Yilian, Tian Rong. Distribution characteristics and adsorption behavior of arsenic on shallow sediments in Shanyin region[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 4006-4014.
Citation: Deng Tiantian, Li Yilian, Tian Rong. Distribution characteristics and adsorption behavior of arsenic on shallow sediments in Shanyin region[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 4006-4014.

山阴地区浅层沉积物中砷的分布特征及吸附行为

  • 1. 中国地质大学(武汉)环境学院,武汉 430074
基金项目:

国家"863"高技术研究发展计划项目(2007AA06Z333)

摘要: 本文通过室内实验的方法,对山阴高砷地下水地区不同浅层沉积物中砷的分布特征及吸附行为进行了研究。结果表明:研究区内饮用水浓度高,病情重。浅层承压含水层中的砷含量平均值为290 mg/kg,在17.4~22.7 m段的平均值达643 mg/kg,22.7~25.8 m段的平均值为115 mg/kg,25.8 m以下的平均值为212 mg/kg。As(Ⅲ)、As(Ⅴ)在4种沉积物表面上的动力学吸附过程均符合Lagergren模型,相关系数达0.9以上。沉积物对As(Ⅴ)的吸附速率较As(Ⅲ)快,但As(Ⅲ)在沉积物中的吸附比As(Ⅴ)稳定。4种含水层介质对As(Ⅲ)、As(Ⅴ)的吸附速率依次为粘土>亚粘土>粉砂>中砂。吸附动力学吸附过程符合二级速率方程。Freundlich方程和Langmuir方程对As(Ⅲ)、As(Ⅴ)的吸附过程拟合性最佳,相关系数均在0.95以上。沉积物对As(Ⅲ)吸附的最佳pH在7~8范围内,As(Ⅴ)吸附的最佳pH在5~6左右。此外,沉积物对砷的吸附性能主要受沉积物颗粒大小、矿物成分等因素综合作用的影响,而非各组分吸附砷的简单加和。

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回