微波诱导AC/Cu、AC/Fe催化非均相Fenton 反应催化降解垃圾渗滤液

汪昆平, 赵越, 郭劲松, 汪春燕, 杨林, 杨云开. 微波诱导AC/Cu、AC/Fe催化非均相Fenton 反应催化降解垃圾渗滤液[J]. 环境工程学报, 2012, 6(11): 3947-3952.
引用本文: 汪昆平, 赵越, 郭劲松, 汪春燕, 杨林, 杨云开. 微波诱导AC/Cu、AC/Fe催化非均相Fenton 反应催化降解垃圾渗滤液[J]. 环境工程学报, 2012, 6(11): 3947-3952.
Wang Kunping, Zhao Yue, Guo Jinsong, Wang Chunyan, Yang Lin, Yang Yunkai. Heterogeneous Fenton reaction for landfill leachate degradation of active carbon/Cu and active carbon/Fe catalysts through microwave induced method[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3947-3952.
Citation: Wang Kunping, Zhao Yue, Guo Jinsong, Wang Chunyan, Yang Lin, Yang Yunkai. Heterogeneous Fenton reaction for landfill leachate degradation of active carbon/Cu and active carbon/Fe catalysts through microwave induced method[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3947-3952.

微波诱导AC/Cu、AC/Fe催化非均相Fenton 反应催化降解垃圾渗滤液

  • 基金项目:

    中央高校基本科研业务基金资助项目(CDJRC10210006)

    国家"水体污染控制与治理"科技重大专项(2009ZX07104-002)

  • 中图分类号: X703

Heterogeneous Fenton reaction for landfill leachate degradation of active carbon/Cu and active carbon/Fe catalysts through microwave induced method

  • Fund Project:
  • 摘要: 采用活性炭载体负载Cu、Fe为催化剂,在微波诱导作用下,对垃圾渗滤液污染物进行降解。实验结果表明,活性炭负载金属前经适当浓度硝酸浸泡处理后,催化剂对COD去除率提高可超过15%,过高硝酸盐浓度对COD去除有不利影响;催化剂对COD去除率随Cu、Fe金属负载量增加呈先增加后降低的趋势, 催化剂对Cu、Fe的最佳负载量分别为质量百分比2.11%和1.12%。对于AC-Cu体系,在初始pH=3,H2O2投加量为4.98×103 mg/L,催化剂用量为5.0×103 mg/L,420 W功率下微波辐射10 min时,垃圾渗滤液COD去除率可达到84.13%;对于AC-Fe体系,当H2O2投加量为0.33×103 mg/L,催化剂AC-Fe用量为2.0×104 mg/L,420 W功率下微波作用10 min时,垃圾渗滤液COD去除率为60.16%。分析2种催化剂对COD去除差异的原因,可能是催化剂AC-Cu表面单分子分布的阈值比AC-Fe高。降解液的pH值对AC-Cu体系、AC-Fe体系COD去除影响存在拐点,最高COD去除率点对应的降解液pH值为3。微波辐射功率较低时,体系COD去除率随辐射功率增加而增加;辐射功率较高时,高温下垃圾渗滤液中有机硫化物分解成小分子硫化物,对催化剂活性存在一定抑制作用。
  • 加载中
  • [1] Renoua S., Givaudana J.G., Poulaina S., et al. Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 2008, 150(3): 468-493
    [2] Ikehata K., Naghashkar N. J., Ei-Din M. G. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone Science & Engineering, 2006, 28(6): 353-414
    [3] Pera-Titus M., Garcia-Molina V., Banos M. A. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 2004, 47(4): 219-256
    [4] Chamarro E., Marco A.,Esplugas S. Use of Fenton reagent to improve of organic chemical biodegradability. Water Research,2001,35(4):1047-1051
    [5] Saatci Y. Decolorization and mineralization of remazol red F3B by Fenton and photo-Fenton processes. Journal of Environmental Engineering, 2010, 136(9): 1000-1005
    [6] Santos A., Yustos P., Rodriguez S., et al. Mineralization lumping kinetic model for abatement of organic pollutants using Fenton’s reagent. Catalysis Today, 2010, 151(1-2):89-93
    [7] Catalkaya E. C., Kargi F. Advanced oxidation and mineralization of simazine using Fenton’s reagent. Journal of Hazardous Materials, 2009, 168(2-3):688-694
    [8] Georgi A., Kopinke F. Interaction of adsorption and catalytic reactions in water decontamination processes: Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon Original. Applied Catalysis B: Environmental, 2005, 58(1-2): 9-18
    [9] Santos V. P., Pereira M. F. R., Faria P. C. C., et al. Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons. Journal of Hazardous Materials, 2009, 162(2-3): 736-742
    [10] Luiz C. A. Oliveira, Cristina N. Silva, Maria I. Yoshida, et al. The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition. Carbon, 2004, 42(11): 2279-2284
    [11] Dantas T., Mendonca V., Jose H., et al. Treatment of textile wastewater by heterogeneous Fenton process using a new composite Fe2O3/carbon. Chemical Engineering Journal, 2006, 118(1-2): 77-82
    [12] Ramirez J. H., Maldonado-Hódar F. J., Pérez-Cadenas A. F., et al. Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B: Environmental 2007, 75(3-4): 312-323
    [13] Yuranova T., Enea O., Mielczarski E., et al. Fenton immobilized photo-assisted catalysis through a Fe/C structured fabric. Applied Catalysis B: Environmental, 2004, 49(1): 39-50
    [14] Remya N., Lin J. G. Current status of microwave application in wastewater treatment—A review. Chemical Engineering Journal, 2011, 166(3):797-813
    [15] 解强,张香兰,陈清如,等. 活性炭硝酸表面改性对催化剂分散度的影响. 新型炭材料, 2003, 18 (3): 203-208 Xie Qiang, Zhang Xianglan, Chen Qingru, et al. Influence of surface modification by nitric acid on the dispersion of copper nitrate in activated carbon. New Carbon Materials, 2003, 18 (3): 203-208(in Chinese)
    [16] 李伟峰,祝社民,宋天顺,等. 负载铜活性炭催化剂制备及催化氧化印染废水. 林产化学与工业, 2006, 26(4):26-30 Li Weifeng, Zhu Shemin, Song Tianshun, et al. Preparation and application of copper-loaded activated carbon catalyst for catalytic oxidation of dye wastewater. Chemistry and Industry of Forest Products, 2006, 26(4):26-30(in Chinese)
    [17] Neyens E., Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique Original Research Article. Journal of Hazardous Materials, 2003, 98(1-3): 33-50
    [18] 刘军, 鲍林发, 汪苹. 运用GCMS联用技术对垃圾渗滤液中有机污染物成分的分析. 环境污染治理技术与设备, 2003, 4(8):31-33 Liu Jun, Bao Linfa, Wang Ping. Analyses of organic pollutant components in leachate by combined GC-MS technique. Techniques and Equipment for Environmental Pollution Control, 2003, 4(8):31-33(in Chinese)
    [19] Banar M., Ozkan A., Kurkcuoglu M. Characterization of the leachate in an urban landfill by physicochemical analysis and solid phase microextraction-GC/MS. Environmental Monitoring and Assessment, 2006, 121(1-3): 439-459
    [20] Jorstad L. B., Jankowski J., Acworth R. I. Analysis of the distribution of inorganic constituents in a landfill leachate-contaminated aquifer Astrolabe Park, Sydney, Australia. Environmental Geology, 2004, 46(2):263-272
    [21] 李承烈, 李贤均, 张国泰. 催化剂失活(第1版). 北京:化学工业出版社, 1989.11-18
  • 加载中
计量
  • 文章访问数:  2093
  • HTML全文浏览数:  899
  • PDF下载数:  2136
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-11-16
  • 刊出日期:  2012-11-09
汪昆平, 赵越, 郭劲松, 汪春燕, 杨林, 杨云开. 微波诱导AC/Cu、AC/Fe催化非均相Fenton 反应催化降解垃圾渗滤液[J]. 环境工程学报, 2012, 6(11): 3947-3952.
引用本文: 汪昆平, 赵越, 郭劲松, 汪春燕, 杨林, 杨云开. 微波诱导AC/Cu、AC/Fe催化非均相Fenton 反应催化降解垃圾渗滤液[J]. 环境工程学报, 2012, 6(11): 3947-3952.
Wang Kunping, Zhao Yue, Guo Jinsong, Wang Chunyan, Yang Lin, Yang Yunkai. Heterogeneous Fenton reaction for landfill leachate degradation of active carbon/Cu and active carbon/Fe catalysts through microwave induced method[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3947-3952.
Citation: Wang Kunping, Zhao Yue, Guo Jinsong, Wang Chunyan, Yang Lin, Yang Yunkai. Heterogeneous Fenton reaction for landfill leachate degradation of active carbon/Cu and active carbon/Fe catalysts through microwave induced method[J]. Chinese Journal of Environmental Engineering, 2012, 6(11): 3947-3952.

微波诱导AC/Cu、AC/Fe催化非均相Fenton 反应催化降解垃圾渗滤液

  • 1. 重庆大学城市建设与环境工程学院, 重庆 400030
基金项目:

中央高校基本科研业务基金资助项目(CDJRC10210006)

国家"水体污染控制与治理"科技重大专项(2009ZX07104-002)

摘要: 采用活性炭载体负载Cu、Fe为催化剂,在微波诱导作用下,对垃圾渗滤液污染物进行降解。实验结果表明,活性炭负载金属前经适当浓度硝酸浸泡处理后,催化剂对COD去除率提高可超过15%,过高硝酸盐浓度对COD去除有不利影响;催化剂对COD去除率随Cu、Fe金属负载量增加呈先增加后降低的趋势, 催化剂对Cu、Fe的最佳负载量分别为质量百分比2.11%和1.12%。对于AC-Cu体系,在初始pH=3,H2O2投加量为4.98×103 mg/L,催化剂用量为5.0×103 mg/L,420 W功率下微波辐射10 min时,垃圾渗滤液COD去除率可达到84.13%;对于AC-Fe体系,当H2O2投加量为0.33×103 mg/L,催化剂AC-Fe用量为2.0×104 mg/L,420 W功率下微波作用10 min时,垃圾渗滤液COD去除率为60.16%。分析2种催化剂对COD去除差异的原因,可能是催化剂AC-Cu表面单分子分布的阈值比AC-Fe高。降解液的pH值对AC-Cu体系、AC-Fe体系COD去除影响存在拐点,最高COD去除率点对应的降解液pH值为3。微波辐射功率较低时,体系COD去除率随辐射功率增加而增加;辐射功率较高时,高温下垃圾渗滤液中有机硫化物分解成小分子硫化物,对催化剂活性存在一定抑制作用。

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回