活性炭孔隙结构在其甲苯吸附中的作用

刘伟, 李立清, 姚小龙, 孙政, 刘峥. 活性炭孔隙结构在其甲苯吸附中的作用[J]. 环境工程学报, 2012, 6(9): 3210-3218.
引用本文: 刘伟, 李立清, 姚小龙, 孙政, 刘峥. 活性炭孔隙结构在其甲苯吸附中的作用[J]. 环境工程学报, 2012, 6(9): 3210-3218.
Liu Wei, Li Liqing, Yao Xiaolong, Sun Zheng, Liu Zheng. Pore structure effects on activated carbon adsorption behavior for toluene[J]. Chinese Journal of Environmental Engineering, 2012, 6(9): 3210-3218.
Citation: Liu Wei, Li Liqing, Yao Xiaolong, Sun Zheng, Liu Zheng. Pore structure effects on activated carbon adsorption behavior for toluene[J]. Chinese Journal of Environmental Engineering, 2012, 6(9): 3210-3218.

活性炭孔隙结构在其甲苯吸附中的作用

  • 基金项目:

    国家自然科学基金资助项目(20976200) 修定日期:2011-03-23

  • 中图分类号: O647.31

Pore structure effects on activated carbon adsorption behavior for toluene

  • Fund Project:
  • 摘要: 选用4种商用活性炭(AC),利用氮气绝热吸附、扫描电子显微镜(SEM)和傅立叶变换红外光谱(FTIR)测试了活性炭的物化性质。以甲苯为吸附质,在温度为298.15 K下进行了静态和动态吸附实验,研究了活性炭孔结构对其吸附性能、吸附行为、表面覆盖率和吸附能的影响。结果表明:活性炭的比表面积和孔容是其吸附性能主要影响因素,孔径在0.8~2.4 nm之间的孔容和甲苯吸附量之间存在较好的线性关系,且线性斜率随甲苯浓度增加而变大。甲苯吸附行为符合Langmuir吸附等温模型和准一阶动力学方程式。活性炭孔结构是甲苯吸附速率的主要制约因素。在甲苯快速吸附阶段,微孔为吸附速率主要制约因素,在甲苯颗粒内扩散阶段,微孔和表面孔为吸附速率的主要制约因素,在吸附末尾阶段,中孔和大孔为吸附速率的主要制约因素。4种活性积炭对甲苯的吸附能随其比表面变大而变大。
  • 加载中
  • [1] Girodsa P., Dufoura A., Fierrob V., et al. Activated carbons prepared from wood particleboard wastes: Characterisation and phenol adsorption capacities. Journal of Hazardous Materials, 2009, 166(1): 491-501
    [2] Chiang Yuchun, Chiang Penchi, Huang Chinpao. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon, 2000, 39(4): 523-534
    [3] Kolade M.A., Kogelbauer A., Alpay E. Adsorptive reactor technology for VOC abatement. Chemical Engineering Science, 2009, 64(6):1167-1177
    [4] 王贵珍, 李丽欣, 李永真, 等. 毛竹活性炭制备及其对含苯酚废水吸附的研究. 高校化学工程学报, 2010, 24(4): 700-704 Wang Guizhen, Li Lixin, Li Yongzhen, et al. Study on the preparation of bamboo activated carbon and its phenol adsorption properties. Journal of Chemical Engineering of Chinese Universities, 2010, 24(4): 700-704(in Chinese)
    [5] Chen Qingjun, Wang Zhi, Long Donghui, et al. Role of Pore Structure of Activated Carbon Fibers in the Catalytic Oxidation of H2S. Industrial and Engineering Chemistry Research, 2010, 49(7): 3152-3159
    [6] Cheng Bei, Le Yao, Cai Weiquan, et al. Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo Red in water. Journal of Hazardous Materials, 2011, 185(2-3): 889-897
    [7] Huang Meichiung, Chou Chiahuei, Teng Hissheng. Pore-size effects on activated-carbon capacities for volatile organic compound adsorption. AIChE Journal, 2002, 48(8): 1804-1810
    [8] 张东, 张文杰, 关欣, 等. 负载型纳米钛酸锶钡对水中Cd2+吸附行为研究. 光谱学与光谱分析, 2009,29(3): 824-828 Zhang Dong, Zhang Wenjie, Guan Xin, et al. Adsorption behavior of immobilized nanometer barium-strontium titanate for cadmium ion in water. Spectrosc. Spect. Anal., 2009, 29(3): 824-828(in Chinese)
    [9] Yamashita Rie, Saito, Yukie, Sakuragawa Satoshi. Molecular sieving behavior of carbonized wood: selective adsorption of toluene from a gas mixture containing α-pinene. The Japan Wood Research Society, 2009, 55(6):446-452
    [10] 周润兰, 喻胜华. 应用概率统计. 北京: 科学出版社, 1999. 30-39
    [11] Wu Rongcheng, Qu Jiuhui, Chen Yongsheng. Magnetic powder MnO-Fe2O3 composite: A novel material for the removal of azo-dye from water. Water Research, 2005, 39(4): 630-638
    [12] 谭艳芝, 王秀芳, 钟国英. 新型竹活性炭对水体违禁药物孔雀石绿吸附性能的影响. 中南大学学报(自然科学版), 2010, 41(4): 1287-1291 Tan Yanzhi, Wang Xiufang, Zhong Guoying. Effect of novel bamboo-based activated carbons on adsorption properties of prohibited drug malachite green in aquatic system. Journal of Central South University (Science and Technology), 2010, 41(4): 1287-1291(in Chinese)
    [13] Weber W.J., Morris J.C. Proceedings of the International Conference on Water Pollution Symposium. London: Pergamon Oxford, 1962. 231-266
    [14] Hameed B.H., Ahmad A.A., Aziz N. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chemical Engineering Journal, 2007, 133(1-3): 195-203
    [15] Dubinin M.M. Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Carbon, 1989, 27(3): 457-467
    [16] Wu Jufang, Strömqvist Marianne E., Claesson Ola, et al. A systematic approach for modelling the affinity coefficient in the Dubinin-Radushkevich equation. Carbon, 2002, 40(14):2587-2596
  • 加载中
计量
  • 文章访问数:  2715
  • HTML全文浏览数:  1585
  • PDF下载数:  2527
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-03-23
  • 刊出日期:  2012-09-14
刘伟, 李立清, 姚小龙, 孙政, 刘峥. 活性炭孔隙结构在其甲苯吸附中的作用[J]. 环境工程学报, 2012, 6(9): 3210-3218.
引用本文: 刘伟, 李立清, 姚小龙, 孙政, 刘峥. 活性炭孔隙结构在其甲苯吸附中的作用[J]. 环境工程学报, 2012, 6(9): 3210-3218.
Liu Wei, Li Liqing, Yao Xiaolong, Sun Zheng, Liu Zheng. Pore structure effects on activated carbon adsorption behavior for toluene[J]. Chinese Journal of Environmental Engineering, 2012, 6(9): 3210-3218.
Citation: Liu Wei, Li Liqing, Yao Xiaolong, Sun Zheng, Liu Zheng. Pore structure effects on activated carbon adsorption behavior for toluene[J]. Chinese Journal of Environmental Engineering, 2012, 6(9): 3210-3218.

活性炭孔隙结构在其甲苯吸附中的作用

  • 1. 中南大学能源科学与工程学院,长沙 410083
基金项目:

国家自然科学基金资助项目(20976200) 修定日期:2011-03-23

摘要: 选用4种商用活性炭(AC),利用氮气绝热吸附、扫描电子显微镜(SEM)和傅立叶变换红外光谱(FTIR)测试了活性炭的物化性质。以甲苯为吸附质,在温度为298.15 K下进行了静态和动态吸附实验,研究了活性炭孔结构对其吸附性能、吸附行为、表面覆盖率和吸附能的影响。结果表明:活性炭的比表面积和孔容是其吸附性能主要影响因素,孔径在0.8~2.4 nm之间的孔容和甲苯吸附量之间存在较好的线性关系,且线性斜率随甲苯浓度增加而变大。甲苯吸附行为符合Langmuir吸附等温模型和准一阶动力学方程式。活性炭孔结构是甲苯吸附速率的主要制约因素。在甲苯快速吸附阶段,微孔为吸附速率主要制约因素,在甲苯颗粒内扩散阶段,微孔和表面孔为吸附速率的主要制约因素,在吸附末尾阶段,中孔和大孔为吸附速率的主要制约因素。4种活性积炭对甲苯的吸附能随其比表面变大而变大。

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回