应用神经网络方法优化垃圾焚烧模拟灰渣熔点的预测
Applying neural network to optimize the melting point prediction of simulant solid waste ash
-
摘要: 采用SiO2、Al2O3、CaO、Na2CO3、NaCl和Fe2O3等物质来模拟垃圾焚烧的真实灰渣组成,通过实验测定模拟灰渣熔点,建立神经网络模型进行熔点预测,由预测结果来指导进一步实验,得到修正的模型,最终预测出的半球温度(HT)平均误差低于5%。Abstract: The experiment of slag melting point measurement has been done using compounds of SiO2, Al2O3, CaO, Na2CO3, NaCl and Fe2O3, which are mixed to simulate real slag. Then a neural network model is set up to predict the melting point, which is used to direct further experiments and improve the model. This model can predit HT (hemisphere temperature) with an average error of less than 5%.
-
Key words:
- melting /
- melting point /
- simulant slag /
- neural network
-
-

计量
- 文章访问数: 2494
- HTML全文浏览数: 1458
- PDF下载数: 852
- 施引文献: 0