酸反应介质对柚子皮水热炭表面性质及吸附性能的影响
Effect of acid reaction medium on the surface characteristics and adsorption properties of hydrochar from pomelo peel
-
摘要: 以柚子皮为原材料,磷酸和醋酸为反应介质,通过水热炭化法制备水热炭,探索了酸种类和酸浓度对水热炭表面性质,以及Pb2+、Cr6+、Cd2+、Cu2+等4种重金属离子和亚甲基蓝吸附性能的影响,并利用光谱分析法对柚子皮水热炭的各项性能进行了表征与分析.结果表明,在不同的酸反应介质下所获得的炭微球尺寸大小有较大的差异,材料颗粒的大小与其吸附性能存在较为密切的关系,颗粒越小吸附性能越强.两种酸反应介质条件下获得的水热炭对4种重金属离子都具有一定的吸附效果,其中以磷酸为反应介质处理后的水热炭材料对Pb2+的吸附效果最好,其最高吸附量为20.11 mg·g-1,最高吸附率为20.13%;而以醋酸为反应介质处理后的水热炭材料对Cr6+的吸附效果最好,其最高吸附量为19.38 mg·g-1,最高吸附率为18.53%.所用酸种类对其表面活性官能团的种类也具有重要影响,与醋酸条件下制备的柚子皮水热炭相比,磷酸条件下制备的水热炭具有丰富的醚键,采用浓度为60%的磷酸所制备的柚子皮水热炭对亚甲基蓝吸附效果最好,其吸附量为56.30 mg·g-1,吸附率高达92.87%.由此可见,不同种类的酸以及酸的浓度均能改善柚子皮水热炭表面性状以及对重金属和亚甲基蓝的吸附性能,这为生产上制备新型的水热炭吸附材料处理工业和农业污水、资源化利用柚子皮生活垃圾提供了科学依据.Abstract: Using pomelo peel as raw material, phosphoric acid and acetic acid as reaction medium, the study explored the effects of acid types and acid concentration on the surface properties of hydrothermal charcoal, as well as on the adsorption properties of the heavy metal ions (such as Pb2+, Cr6+, Cd2+, and Cu2+) and methylene blue by hydrothermal carbonization method. Then it analyzed the properties of citron peel hydrothermal charcoal by spectroscopic analysis. The results showed that there were large differences among the sizes of carbon microspheres obtained from reaction media with different acid types. In addition, the size of carbon microspheres correlated closely with the adsorption. Specifically, the smaller the sizes, the stronger the adsorption. The hydrothermal carbon obtained under the conditions of the two acid reaction media had certain adsorption effects on the four heavy metal ions. Among them, the hydrothermal carbon material treated with phosphoric acid as the reaction medium had the best adsorption effect on Pb2+, and the highest adsorption capacity was 20.11 mg·g-1 with the highest adsorption rate up to 20.13%. While that treated with acetic acid as the reaction medium had the best adsorption effect on Cr6+, and the highest adsorption amount was 19.38 mg·g-1 with the highest adsorption rate of 18.53%. The acid types also had important effects on the kinds of surface-active functional groups. The hydrothermal charcoal prepared under phosphoric acid conditions had richer ether bonds than that under acetic acid conditions. Moreover, the hydrothermal charcoal using 60% concentration of phosphoric acid had strongest adsorption on methylene blue with 56.30 mg·g-1 adsorption capacity and 92.87% adsorption rate. In summary, both acid kinds and acid concentrations could improve the surface properties of citron peel hydrothermal charcoal and the adsorption performance of heavy metals and methylene blue, which would provide scientific basis for production of new hydrothermal charcoal adsorption material.
-
Key words:
- hydrothermal carbonization /
- pomelo peels /
- phosphoric acid /
- acetic acid /
- adsorption
-
-
[1] 谢瑞瑞, 王倩, 薛旭东,等. 草酰胺功能化的荧光阴离子骨架及其对亚甲基蓝的选择性吸附[J]. 应用化学, 2017, 34(9):1066-1071. XIE R R, WANG Q, XUE X D, et al. A photoluminescent anionic metal-organic framework with oxalamide groups for selective methylene blue adsorption[J]. Chinese Journal of Applied Chemistry,2017, 34(9):1066-1071(in Chinese).
[2] 季雪琴, 吕黎, 陈芬,等. 秸秆生物炭对有机染料的吸附作用及机制[J].环境科学学报, 2016, 36(5):1648-1654. JI X Q, LV L, CHEN F, et al. Sorption properties and mechanisms of organic dyes by straw biochar[J]. Acta Scientiae Circumstantiae,2016, 36(5):1648-1654(in Chinese).
[3] 梁威,胡洪营. 印染废水生物强化处理技术研究进展[J]. 环境工程学报, 2004, 5(1):8-11. LIANG W, HU H Y, Research advances in biological enhancing treatment techniques for dyeing wastewater[J]. Chinese Journal of Environmental Engineering, 2004, 5(1):8-11(in Chinese).
[4] [5] ROBERTS K G, GLOY B A, JOSEPH S, et al. Life cycle assessment of biochar systems:Estimating the energetic, economic, and climate change potential[J]. Environmental Science & Technology,2010, 44(2):827-833. [6] LEHMANN J, ITHACA, YORK N, et al. Biochar for environmental management:Science, technology and implementation[J]. Science and Technology; Earthscan, 2015, 25(1):15801-15811. [7] CAO X, MA L,GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9):3285-3291. [8] RIVERAUTRILLA J, SÁNCHEZ-POLO M,GÓMEZ-SERRANO V, et al. Activated carbon modifications to enhance its water treatment applications:An overview[J]. Journal of Hazardous Materials, 2011, 187:1-23. [9] WU Q, LI W, LIU S. Carboxyl-rich carbon microspheres prepared from pentosan with high adsorption capacity for heavy metal ions[J]. Materials Research Bulletin, 2014, 60:516-523. [10] CHAND R, WATARI T,INOUEETK, et al. Chemical modification of carbonized wheat and barley straw using HNO3 and the adsorption of Cr(Ⅲ)[J]. Journal of Hazardous Materials, 2009, 167:319-324. [11] JIA Y F, THOMAS K M. Adsorption of cadmium ions on oxygen surface sites in activated carbon[J]. Langmuir, 2000, 16(3):1114-1122. [12] SÁNCHEZ-POLO M J, RIVERA-UTRILLA. Adsorbent-adsorbate interactions in the adsorption of Cd(Ⅱ) and Hg(Ⅱ) on ozonized activated carbons[J]. Environmental Science & Technology, 2000, 36(17):3850-3854. [13] ZHU L, LEI H W, WANG L, et al. Biochar of corn stover:Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics[J]. Journal of Analytical & Applied Pyrolysis, 2015, 115:149-156. [14] SUN Y, YUE Q, MAO Y, et al. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/Mn activation[J]. Journal of Hazardous Materials, 2014, 265:191-200. [15] LIU Z F, ZHANG S, WU J, Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment[J]. The Science and Technology of Fuel and Energy, 2010, 89(2):510-514. [16] 孙克静, 张海荣, 唐景春.不同生物质原料水热生物炭特性的研究[J]. 农业环境科学学报, 2014,33(11):2260-2265. SUN J C, ZHANG H R, TANG J C. Properties of hydrochars from different sources of biomass feedstock[J]. Journal of Agro-Environment Science, 2014, 33(11):2260-2265(in Chinese).
[17] CHEN B, ZHOU D, ZHU L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2014, 42(14):5137-5143. [18] ZHENG W, GUO R, CHOW R, et al. Sorption properties of greenwaste biochar for two triazine pesticides[J]. Journal of Hazardous Materials, 2010, 181:121-126. [19] 黄瑶瑶, 石润平, 黄涵芳,等. 柚子皮对模拟放射性废水中钍(IV)的选择性吸附[J]. 应用化工, 2017, 46(9):1742-1746. HUANG Y Y, SHI R P, HUANG H F, et al. Selective adsorption of thorium in radioactive waste water by pummelo peel[J]. Applied Chemical Industry, 2017, 46(9):1742-1746(in Chinese).
[20] 周晖, 韩香云.柚子皮吸附废水中重金属的研究[J]. 污染防治技术, 2013(2):11-15. ZHOU H, HAN X Y. Study on adsorption of heavy metals by pomelo peel in wastewater[J]. Pollution Control Technology, 2013 (2):11-15(in Chinese).
[21] SAHIN O, TASKIN M B, KAYA E C, et al. Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil[J]. Soil Use & Management, 2017, 33(3):447-456. [22] WU X, ZHU W, ZHANG X, et al. Catalytic deposition of nanocarbon onto palygorskite and its adsorption of phenol[J]. Applied Clay Science, 2011, 52(4):400-406. [23] 郑庆福, 王志民, 陈保国,等. 制备生物炭的结构特征及炭化机理的XRD光谱分析[J]. 光谱学与光谱分析, 2016, 36(10):3355-3359. ZHENG Q F, WANG Z G, CHEN B M, et al. Analysis of XRD spectral structure and carbonization of the biochar preparation[J].Spectroscopy and Spectral Analysis, 2016, 36(10):3355-3359(in Chinese).
[24] SEVILLA M, FUERTES A B. Fuertes, Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry:A European Journal, 2009, 15(16):4195-4203. [25] 张志刚. 柚子皮对水中六价铬的吸附性能研究[J]. 福建工程学院学报, 2014(6):557-561. ZHANG Z G, Study on adsorption of Cr(Ⅵ) in water by shaddock peel[J]. Journal of Fujian University of Technology,2014 (6):557-561(in Chinese).
-

计量
- 文章访问数: 2651
- HTML全文浏览数: 2651
- PDF下载数: 109
- 施引文献: 0