-
我国甘肃、新疆、青海等西北地区,干旱少雨,地表蒸发量大,属严重缺水区域[1]. 尤其是黄土塬上的偏远村镇,没有可利用的地表水和地下水,资源性缺水更加严重[2-3]. 这些村镇不具备修建大型水利工程的条件,收集雨水是当地村民唯一的饮水方式,而水窖是最常用的雨水储存设施[4].
与河、库等地表水相比,雨水是一种水质较好的优质水源[5],但在收集饮用时同样面临着一定的水质污染风险. 集流面材料是影响雨水安全集蓄的一个关键因素. 常见的集流面有瓦屋面、沥青屋面和混凝土地面等. 其中,沥青屋面释放的污染物最多,获得的水质最差;混凝土地面应用最多,释放的碱性物质会显著提高雨水pH[6]. 此外,水窖周围环境是影响窖水水质的另一重要因素. 已有研究表明,建在厕所和牲畜棚旁边的窖水含有更多的污染物质[7].
新污染物是指具有环境稳定性、生物累积性和生物毒性的有毒有害化学物质,主要包括持久性有机污染物、内分泌干扰物、抗生素和微塑料四大类. 不同于常规污染物,新污染物浓度水平一般较低,但由于生物累积和生物放大作用,对人体和生态系统潜在威胁较大.
邻苯二甲酸酯(PAEs)和全氟化合物(PFCs)是两类典型的新污染物. PAEs是一种环境激素类内分泌干扰物,能够抑制雄性激素的生成,对人类的呼吸系统、生殖系统和内分泌系统均有损害. PFCs广泛应用于聚四氟乙烯生产,是重要的防水防油材料,也是灭火泡沫的主要成分. PFCs对人体肝脏功能、脂肪代谢和遗传发育均有不良影响[8]. 已有研究表明,两种污染物广泛存在于全球大气、土壤及水环境介质中[9-12]. 可以推断,在西北高海拔黄土塬区村镇,PAEs和PFCs两种新污染物同样存在,窖水也面临着相应的的污染风险. 然而,针对西北村镇窖水这种分散型饮用水源,还未有新污染物方面的报道.
窖水作为西北高海拔村镇唯一可用的饮用水源,其水质安全对当地村民身体健康有着重要意义. 本研究基于西北黄土塬区村镇饮水现状,以我国甘肃某县为代表区域,采集冬夏两季窖水进行水质分析,研究了15种目标PAEs和17种PFCs在冬夏两季窖水中的浓度水平和组成,讨论了两种新污染物来源,并利用模型计算了采样点覆盖区域内人群通过饮用窖水摄入PAEs和PFCs的健康风险,为西北高海拔黄土塬区村镇窖水的饮用处理提供了基础数据支撑.
甘肃某县窖水水质分析及健康风险评价
Water quality analysis and health risk assessment of water cellars in a county of Gansu
-
摘要: 本文以甘肃某县为代表,对区域内冬、夏两季窖水的常规指标、17种全氟化合物和15种邻苯二甲酸酯类进行了检测,对污染来源进行了探讨,并评估了两类新污染物的健康风险. 结果表明:该县窖水pH普遍偏高,夏季雨期窖水浊度显著高于冬季. 新污染的检测中,共检出13 种邻苯二甲酸酯类(PAEs)和14 种全氟化合物(PFCs). 冬季窖水中PAEs总浓度范围为2.65—3.71 μg·L−1,总浓度平均值3.12 μg·L−1. 夏季窖水中PAEs总浓度范围为1.85—9.26 μg·L−1,总浓度平均值为4.56 μg·L−1. 两季窖水中,邻苯二甲酸二丁酯和邻苯二甲酸二异丁酯是含量最高的成分,两种物质分别占窖水PAEs总浓度的47.8%和48.5%,窖水中PAEs没有致癌和非致癌风险. 冬季窖水中PFCs的总浓度为143.93—246.47 ng·L−1,夏季为275.90—405.51 ng·L−1. 检测出的PFCs包括全氟羧酸(PFCAs)和全氟磺酸(PFSAs)两大类,PFCAs占窖水PFCs总量的80%以上,是窖水中PFCs的主体. 两季窖水中全氟辛酸、全氟辛烷磺酸、全氟壬酸和全氟己烷磺酸的健康风险评价结果显示,除个别窖水样品,4种PFCs的浓度一般较低不构成健康风险.Abstract: In this study, the water quality conventional indexes, and the concentrations of 17 perfluorocarbons(PFCs) and 15 phthalates(PAEs) of cellar water in winter and summer were investigated in a typical county in Gansu Province. The pollution sources and the health risks of PFCs and PAEs were evaluated. Results showed that the pH values of cellar water in this area were generally high. The turbidity of cellar water in summer was obviously higher than that in winter. A total of 13 phthalates (PAEs) and 14 perfluorocarbons (PFCs) were detected in cellar water samples. The cellar water concentrations of PAEs in winter were in the range of 2.65—3.71 μg·L−1, with an average concentration of 3.12 μg·L−1. In summer, the concentration of PAEs ranged from 1.85 μg·L−1 to 9.26 μg·L−1, with an average of 4.56 μg·L−1. Dibutyl phthalate (DBP) and diisobutyl phthalate (DIBP) were the main kinds of PAEs in cellar water, accounting for 47.8% and 48.5%, respectively. Based on human health risk assessment modeling, non carcinogenic and carcinogenic risks were found in the cellar water samples. The total concentration of PFCs in cellar water was 143.93—246.47 ng·L−1 in winter and 275.90—405.51 ng·L−1 in summer. The detected PFCs included perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), and PFCAs accounted for more than 80% of the total PFCs in cellar water. Health risk assessment of Perfluorooctanoic acid, perfluorooctanesulfonic acid, perfluorononanoic acid and perfluorohexanesulfonic acid in winter and summer indicated that most water cellars had low concentration levels with low health risk, with the exception of individual water cellars with health risks.
-
表 1 检测的15种PAEs类型及化学式
Table 1. The type and chemical formulas of 15 PAEs in this study
化合物
Compouds英文名称
English name英文缩写
Abbreviation化学式
Chemical formulaCAS编号
CAS number邻苯二甲酸二甲酯 Dimethyl phthalate DMP C10H10O4 131-11-3 邻苯二甲酸二乙酯 Diethyl phthalate DEP C12H14O4 84-66-2 邻苯二甲酸二异丁酯 Diisobutyl phthalate DIBP C16H20O4 84-69-5 邻苯二甲酸二丁酯 Dibutyl phthalate DBP C16H22O4 84-74-2 邻苯二甲酸二甲氧乙酯 Dimethylglycol phthalate DMEP C14H16O6 117-82-8 双(4-甲基-2-戊基)邻苯二甲酸酯 Bis(4-Methyl-2-pentyl)phthalate BMPP C20H30O4 146-50-9 双(2-乙氧基)邻苯二甲酸酯 Bis(2-ethoxyethyl) phthalate DEEP C16H22O6 605-54-9 邻苯二甲酸二戊酯 Di-n-pentyl phthalate DPP C18H26O4 131-18-0 邻苯二甲酸二己酯 Di-n-hexyl phthalate DNHP C20H30O4 84-75-3 邻苯二甲酸苄酯 Mono-Benzyl phthalate BBP C15H12O4 2528-16-7 双(2-正丁氧基乙酯)邻苯二甲酸酯 Bis(2-butoxyethyl) phthalate DBEP C20H30O6 117-83-9 邻苯二甲酸二环己基酯 Dicyclohexyl phthalate DCHP C20H26O4 84-61-7 邻苯二甲酸二辛酯 Di-n-octyl phthalate DNOP C24H38O4 117-84-0 双(2-乙基己基)邻苯二甲酸酯 Di(2-ethylhexyl)phthalate DEHP C24H38O4 117-81-7 邻苯二甲酸二异壬酯 Diisononyl phthalate DINP C26H42O4 68515-48-0 表 2 检测的17种PFCs类型及化学式
Table 2. The type and chemical formulas of 17 PFCs in this study
化合物
Compouds英文名称
English name英文缩写
Abbreviation化学式
Chemical formulaCAS编号
Chemical formula对应内标
Inner standard全氟丁酸 Perfluorobutanoic acid PFBA C3F7COOH 375-22-4 13C4PFBA 全氟戊酸 Perfluoropentanoic acid PFPeA C4F9COOH 2706-90-3 13C4PFOA 全氟己酸 Perfluorohexanoic acid PFHxA C5F11COOH 307-24-4 13C4PFHxA 全氟庚酸 Perfluoroheptanoic acid PFHpA C6F13COOH 375-85-9 13C4PFHxA 全氟辛酸 Perfluorooctanoic acid PFOA C7F15COOH 206-397-9 13C4PFOA 全氟壬酸 Perfluorononanoic acid PFNA C8F17COOH 375-95-1 13C4PFNA 全氟癸酸 Perfluorodecanoic acid PFDA C9F19COOH 335-76-2 13C4PFDA 全氟十一酸 Perfluoroundecanoic acid PFUnDA C10F21COOH 218-165-4 13C4PFUdA 全氟十二酸 Perfluorododecanoic acid PFDoDA C11F23COOH 307-55-1 13C2PFDoA 全氟十三酸 Perfluorotridecanoic acid PFTrDA C12F25COOH 276-745-2 13C2PFDoA 全氟十四酸 Perfluorotetradecanoic acid PFTeDA C13F27COOH 376-06-7 13C2PFDoA 全氟十六酸 Perfluorohexadecanoic acid PFHxDA C15F31COOH 67905-19-5 13C2PFDoA 全氟十八酸 Perfluorooctadecanoic acid PFODA C17F35COOH 16517-11-6 13C2PFDoA 全氟丁烷磺酸 Perfluorobutanesulfonic acid PFBS C4F9SO3H 375-73-5 18O2PFHxS 全氟己烷磺酸 Perfluorohexanesulfonic acid PFHxS C6F13SO3H 355-46-4 18O2PFHxS 全氟辛烷磺酸 Perfluorooctanesulfonic acid PFOS C8F17SO3H 1763-23-1 13C4PFOS 全氟癸烷磺酸 Perfluorodecanesulfonic acid PFDS C10F21SO3H 335-77-3 13C4PFOS 表 3 冬季窖水样品常规指标检测结果
Table 3. Test results of general parameters of cellar water samples in winter
地点
Position温度/℃
Temperature浊度/NTU
TurbiditypH 溶解氧/(mg·L−1)
DO氧化还原电位/mV
ORP总溶解固体/(mg·L−1)
TDS总有机碳/(mg·L−1)
TOC总氮/(mg·L−1)
TNa 8.5 11.7 9.7 6.9 154.5 61.4 0.69 0.99 b 7.8 29.5 8.0 7.7 207.0 92.4 2.61 2.25 c 7.9 4.2 8.8 6.2 223.5 67.7 1.02 0.78 d 6.1 1.8 9.0 4.9 207.7 59.6 0.58 1.00 e 5.8 3.2 8.6 5.6 196.3 62.4 0.62 1.02 f 6.2 2.3 8.4 5.2 213.3 65.6 0.73 1.23 g 5.4 6.1 8.6 8.8 185.4 110.0 1.62 0.64 h 7.2 5.3 8.3 5.9 218.6 68.0 0.98 0.68 表 4 夏季窖水样品常规指标检测结果
Table 4. Test results of general parameters of cellar water samples in summer
地点
Position温度/℃
Temperatur浊度/NTU
TurbiditypH 溶解氧/(mg·L−1)
DO氧化还原电位/mV
ORP总溶解固体/(mg·L−1)
TDS总有机碳/(mg·L−1)
TOC总氮/(mg·L−1)
TN1 18.8 30.6 8.8 5.9 193.2 51.3 1.91 2.07 2 21.3 58.5 9.4 6.3 211.7 223.0 3.18 3.27 3 12.5 4.7 9.0 7.6 176.5 62.9 0.78 1.38 4 17.0 18.8 8.5 6.0 204.0 60.0 1.39 0.98 5 21.9 14.1 8.5 4.8 188.2 68.7 1.19 0.80 6 20.2 11.8 8.4 6.5 226.7 61.6 1.18 1.97 7 19.3 15.1 8.6 5.1 189.7 51.7 1.34 0.99 8 21.6 19.6 8.5 4.3 235.4 238.0 1.56 2.45 9 19.5 8.8 8.3 2.9 228.0 46.4 1.22 2.05 10 18.2 19.0 8.2 5.6 173.9 53.7 1.51 1.68 -
[1] 史康立, 刘愿英, 万亮婷, 等. 试论西北地区的缺水问题及其对策 [J]. 干旱地区农业研究, 2006, 24(2): 178-182,194. SHI K L, LIU Y Y, WAN L T, et al. Discussion on water shortage and countermeasures in northwest regions of China [J]. Agricultural Research in the Arid Areas, 2006, 24(2): 178-182,194(in Chinese).
[2] SUN S A, ZHOU X, LIU H X, et al. Unraveling the effect of inter-basin water transfer on reducing water scarcity and its inequality in China [J]. Water Research, 2021, 194: 116931. doi: 10.1016/j.watres.2021.116931 [3] 翟自宏. 解决甘肃水资源短缺的有效途径 [J]. 中国农村水利水电, 2016(12): 106-108. ZHAI Z H. An effective way to solve the shortage of water resources in Gansu [J]. China Rural Water and Hydropower, 2016(12): 106-108(in Chinese).
[4] 徐强, 王小贞, 魏奋子. 西北黄土高原地区农村集雨窖水饮水安全保障研究 [J]. 甘肃科技, 2020, 36(17): 54-57, 32. XU Q, WANG X Z, WEI F Z. Study on drinking water safety guarantee of rural rainwater collection cellar in Northwest Loess Plateau [J]. Gansu Science and Technology, 2020, 36(17): 54-57, 32(in Chinese).
[5] LEE M J, KIM M, KIM Y, et al, Consideration of rainwater quality parameters for drinking purposes: A case study in rural Vietnam[J]. Journal of Environmental Management, 2017, 200: 400-406. [6] MAO J, XIA B Y, ZHOU Y, et al. Effect of roof materials and weather patterns on the quality of harvested rainwater in Shanghai, China [J]. Journal of Cleaner Production, 2021, 279: 123419. doi: 10.1016/j.jclepro.2020.123419 [7] 卢晓岩, 朱琨, 梁莹, 王亚军. 西北黄土高原地区雨水集流的水质特点 [J]. 兰州交通大学学报, 2004, 23(6): 15-18. LU X Y, ZHU K, LIANG Y, et al. Characteristics of rainwater quality harvested at loess plateau of northwest China [J]. Journal of Lanzhou Jiaotong University, 2004, 23(6): 15-18(in Chinese).
[8] CHEN R Y, LI G W, HE Y T, et al. Field study on the transportation characteristics of PFASs from water source to tap water [J]. Water Research, 2021, 198: 117162. doi: 10.1016/j.watres.2021.117162 [9] LE T M, NGUYEN H, NGUYEN V K, et al. Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam [J]. The Science of the Total Environment, 2021, 788: 147831. doi: 10.1016/j.scitotenv.2021.147831 [10] SUJA F, PRAMANIK B K, ZAIN S M. Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: A review paper [J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2009, 60(6): 1533-1544. doi: 10.2166/wst.2009.504 [11] CHEN S, JIAO X C, GAI N, et al. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in Eastern China [J]. Environmental Pollution (Barking, Essex:1987), 2016, 211: 124-131. doi: 10.1016/j.envpol.2015.12.024 [12] LEE Y M, LEE J E, CHOE W, et al. Distribution of phthalate esters in air, water, sediments, and fish in the asan lake of Korea [J]. Environment International, 2019, 126: 635-643. doi: 10.1016/j.envint.2019.02.059 [13] 宋小三, 张国珍, 何春生, 等. 水窖集雨水水质规律研究 [J]. 兰州交通大学学报, 2011, 30(3): 129-131. doi: 10.3969/j.issn.1001-4373.2011.03.029 SONG X S, ZHANG G Z, HE C S, et al. Research on the harvested rainwater quality rule of water cellar [J]. Journal of Lanzhou Jiaotong University, 2011, 30(3): 129-131(in Chinese). doi: 10.3969/j.issn.1001-4373.2011.03.029
[14] CHEN R Y, LI G W, YU Y, et al. Occurrence and transport behaviors of perfluoroalkyl acids in drinking water distribution systems [J]. The Science of the Total Environment, 2019, 697: 134162. doi: 10.1016/j.scitotenv.2019.134162 [15] 弥启欣, 国晓春, 卢少勇, 等. 千岛湖水体中邻苯二甲酸酯(PAEs)的分布特征及健康风险评价 [J]. 环境科学, 2022, 43(4): 1966-1975. MI Q X, GUO X C, LU S Y, et al. Distribution characteristics and ecological and health risk assessment of phthalic acid esters in surface water of Qiandao Lake, China [J]. Environmental Science, 2022, 43(4): 1966-1975(in Chinese).
[16] 开晓莉, 张维江, 邱小琮, 等. 清水河污染物对儿童所致健康风险评估 [J]. 环境化学, 2018, 37(12): 2809-2819. doi: 10.7524/j.issn.0254-6108.2018060402 KAI X L, ZHANG W J, QIU X C, et al. Health risk evaluation of children caused by water pollutants in Qingshui River [J]. Environmental Chemistry, 2018, 37(12): 2809-2819(in Chinese). doi: 10.7524/j.issn.0254-6108.2018060402
[17] 贺小敏, 施敏芳. 梁子湖水体和沉积物中邻苯二甲酸酯分布特征及生态健康风险评价 [J]. 中国环境监测, 2021, 37(2): 115-127. HE X M, SHI M F. Distribution characteristics and ecological and health risk assessment of phthalic acid esters in surface water and sediment of liangzi lake, China [J]. Environmental Monitoring in China, 2021, 37(2): 115-127(in Chinese).
[18] 赵秀阁, 段小丽. 中国人群暴露参数手册(成人卷)概要[M]. 北京: 中国环境出版社, 2014. ZHAO X G, DUAN X L. Highlights of the Chinese exposure factors handbook(adults)[M]. China Environment Publishing Press, 2014(in Chinese).
[19] WANG Y, WANG F, XIANG L L, et al. Risk assessment of agricultural plastic films based on release kinetics of phthalate acid esters [J]. Environmental Science & Technology, 2021, 55(6): 3676-3685. [20] 王瑞霖, 冉艳, 黄维, 等. 三峡库区御临河邻苯二甲酸酯类的空间分布特征及关键环境影响因子[J]. 土木与环境工程学报(中英文), 2022, 44(8): 193-200. WANG R L, REN Y, HUANG W, et al. Spatial distribution characteristics and key environmental impact factors of phthalates in Yulin River in the Three Gorges Reservoir Area [J]. Journal of civil and Environmental Engineering (Chinese and English), 2022, 44(8): 193-200(in Chinese).
[21] ZHAO X, SHEN J M, ZHANG H, et al. The occurrence and spatial distribution of phthalate esters (PAEs) in the Lanzhou section of the Yellow River [J]. Environmental Science and Pollution Research International, 2020, 27(16): 19724-19735. doi: 10.1007/s11356-020-08443-7 [22] 张英, 孙继朝, 陈玺, 等. 东莞地下水邻苯二甲酸酯分布特征及来源探讨 [J]. 环境污染与防治, 2011, 33(8): 57-61. ZHANG Y, SUN J C, CHEN X, et al. The distribution characteristics and source of phthalic acid esters in groundwater of Dongguan [J]. Environmental Pollution & Control, 2011, 33(8): 57-61(in Chinese).
[23] ZHANG D, LIU H, LIANG Y, et al. Distribution of phthalate esters in the groundwater of Jianghan plain, Hubei, China [J]. Frontiers of Earth Science in China, 2009, 3(1): 73-79. doi: 10.1007/s11707-009-0017-5 [24] SUN R, WU M H, TANG L, et al. Perfluorinated compounds in surface waters of Shanghai, China: Source analysis and risk assessment [J]. Ecotoxicology and Environmental Safety, 2018, 149: 88-95. doi: 10.1016/j.ecoenv.2017.11.012 [25] ZHANG G, PAN Z, WU Y, et al. Distribution of perfluorinated compounds in surface water and soil in partial areas of Shandong Province, China [J]. Soil and Sediment Contamination:An International Journal, 2019, 28(5): 502-512. doi: 10.1080/15320383.2019.1635079 [26] 高杰, 李文超, 李广贺, 等. 北京部分地区地下水中全氟化合物的污染水平初探 [J]. 生态毒理学报, 2016, 11(2): 355-363. GAO J, LI W C, LI G H, et al. Preliminary investigation on perfluorinated compounds in groundwater in some areas of Beijing, China [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 355-363(in Chinese).
[27] QI Y J, HUO S L, HU S B, et al. Identification, characterization, and human health risk assessment of perfluorinated compounds in groundwater from a suburb of Tianjin, China [J]. Environmental Earth Sciences, 2016, 75(5): 1-12. [28] 昌盛, 樊月婷, 付青, 等. 北江清远段地表水及沉积物中酞酸酯的分布特征与风险评估 [J]. 生态环境学报, 2019, 28(4): 822-830. CHANG S, FAN Y T, FU Q, et al. Distribution characteristics and risk assessment of phthalic acid esters in surface water and sediment of Qingyuan section of Beijiang River [J]. Ecology and Environmental Sciences, 2019, 28(4): 822-830(in Chinese).