-
含氯挥发性有机化合物(CVOCs)来源广泛,成分复杂,因具有高毒性和稳定性等特点受到广泛关注[1-2]。其中三氯乙烯(Trichloroethylene,TCE)作为原料、溶剂和脱脂剂广泛应用于制药、电子电镀等工业生产中[3],在制药和脱脂等过程中,可能会被释放到室内或室外空气中,对环境和人体健康造成危害。三氯乙烯已被世界卫生组织国际癌症研究机构列入一类致癌清单。CVOCs污染控制技术主要有吸附、吸收、催化氧化、生物氧化、等离子体等[4-5],相比而言,低温等离子体技术(Non-thermal Plasma,NTP)具有设备简单、启停便捷、反应迅速等优势而被广泛研究[6-7]。然而单一NTP技术在降解CVOCs时存在选择性低,容易形成O3和NOx等副产物等缺点。近年来研究表明,通过将低温等离子体技术和催化氧化技术耦合,可以提高CVOCs的去除率并减少副产物的产生[8-9]。
低温等离子体-催化氧化技术中,催化剂的选择对CVOCs降解效果有着很大的影响。过渡金属(Fe、Co、Mn、Ce、Cu)作为催化剂具有成本低、抗中毒、还原性好等优点而被广泛研究[10-11]。此外,许多研究表明通过将两种或多种过渡金属结合可以提高催化活性[6,9,12]。其中Mn基催化剂能够有效的将O3分解为活性氧,一方面促进了臭氧分解,另一方面分解得到的具有强氧化性的活性氧也可进一步促进CVOCs的氧化分解[13-14]。然而Mn基催化剂降解CVOCs时存在HCl和Cl2的总选择性低的问题[15],通过向Mn基催化剂中掺杂其他金属可以提高CVOCs的降解效果,降低副产物产量[16]。Co被认为是氧化CVOCs的一种有效催化剂,Boukha等[17]的研究结果显示Co催化剂能有效抑制1,2-二氯乙烷降解过程中产生的有机中间产物,提高HCl和Cl2的选择性。近年来研究表明Co-Mn双金属催化剂相比于单独的Co、Mn催化剂具有更高的催化活性[12,18-19]。考虑到Co和Mn两种金属之间存在协同效应,因此Co-Mn双金属催化剂耦合低温等离子体降解三氯乙烯具有研究意义。
本研究以γ-Al2O3为载体,采用等体积浸渍法制备不同比例的Co-Mn/γ-Al2O3双金属催化剂,并耦合NTP催化降解含三氯乙烯废气,从三氯乙烯去除率、CO2产率、CO产率、COx产率、氯平衡和副产物(O3和N2O)的产量为评价指标,探究不同Co:Mn比例对三氯乙烯降解性能的影响。通过比表面积及孔径分析(BET)、X射线衍射(XRD)、X射线光电子能谱(XPS)、H2程序升温还原(H2-TPR)方法对催化剂的物理化学性质进行表征,以阐明不同催化剂对三氯乙烯的降解差异,为NTP降解CVOCs系统中催化剂的优化及应用提供参考。
低温等离子体耦合Co-Mn双金属催化剂降解三氯乙烯
Removal of trichloroethylene by non-thermal plasma combined with Co-Mn bimetallic catalyst
-
摘要: 以γ-Al2O3为载体,采用等体积浸渍法制备钴锰催化剂(Co/γ-Al2O3、Mn/γ-Al2O3、Co3Mn1/γ-Al2O3、Co1Mn1/γ-Al2O3、Co1Mn3/γ-Al2O3),研究不同催化剂耦合低温等离子体(NTP)对三氯乙烯的降解性能。与单一NTP相比,NTP耦合催化剂可显著提高三氯乙烯的去除率、COx产率、碳平衡、HCl和Cl2产率,减少副产物的产生。Co-Mn双金属催化剂催化性能高于单一Co和Mn负载的催化剂,其中Co3Mn1/γ-Al2O3具有最高的催化活性,电压为6—10 kV,Co3Mn1/γ-Al2O3耦合NTP对三氯乙烯去除率(39.7%—96.94%)与COx(33.04%—87.36%)产率最高。通过BET、XRD、H2-TPR、XPS表征催化剂的物化性质,以阐明不同催化剂耦合NTP降解三氯乙烯效果存在差异的原因。结果显示,Co3Mn1/γ-Al2O3催化剂具有较高的比表面积,较小的Co3O4晶粒尺寸,较低的还原温度,且催化剂表面上的Mn4+、Co3+和Oads含量更高,有利于三氯乙烯的降解。最后通过GC-MS分析三氯乙烯降解过程中产生的有机中间体,推测了低温等离子体降解三氯乙烯的反应路径。Abstract: The cobalt-manganese catalysts (Co/γ-Al2O3、Mn/γ-Al2O3、Co3Mn1/γ-Al2O3、Co1Mn1/γ-Al2O3、Co1Mn3/γ-Al2O3) were prepared by equal volume impregnation method using γ-Al2O3 as the carrier to study the degradation performance of trichloroethylene by different catalysts coupled with non-thermal plasma (NTP). Compared with single NTP, the NTP-coupled catalyst significantly improved the removal of trichloroethylene、COx yield、Carbon balance、HCl and Cl2 yield、and reduced by-product generation. The catalytic performance of Co-Mn bimetallic catalysts is higher than that of single Co and Mn loaded catalysts, and Co3Mn1/γ-Al2O3 has the highest catalytic activity.At the voltage of 6—10 kV, Co3Mn1/γ-Al2O3 coupled with NTP has the highest removal rate of trichloroethylene (39.7%—96.94%) and the highest COx yield (33.04%—87.36%). BET、XRD、H2-TPR、XPS were used to characterize the physical and chemical properties of the catalysts to clarify the reasons for the differences in the performance of different catalysts coupled with NTP in the degradation of trichloroethylene. The results showed that the Co3Mn1/γ-Al2O3 catalyst had higher specific surface area, smaller Co3O4 grain size, lower reduction temperature, and higher content of Mn4+、Co3+ and Oads on the catalyst surface, which were beneficial to the degradation of trichloroethylene. Finally, the organic intermediates produced during the degradation of trichloroethylene were analyzed by GC-MS to speculate the reaction path of trichloroethylene degradation by non-thermal plasma.
-
Key words:
- non-thermal plasma /
- Co-Mn bimetallic catalyst /
- trichloroethylene /
- removal efficience /
- by-product
-
表 1 催化剂的比表面积及孔结构性质
Table 1. BET surface area and pore structure of catalyst
催化剂
CatalystBET比表面积/(m2·g−1)
Specific surface area孔容/(cm3·g−1)
Pore volume孔径/nm
Average diameterγ-Al2O3 151.78 0.6657 17.5426 Co/γ-Al2O3 129.13 0.4214 13.0531 Mn/γ-Al2O3 132.88 0.4068 12.2458 Co1Mn3/γ-Al2O3 137.84 0.3833 12.122 Co1Mn1/γ-Al2O3 137.44 0.3763 10.9505 Co3Mn1/γ-Al2O3 146.15 0.3809 10.4237 表 2 催化剂的XPS结果
Table 2. XPS results of the catalysts
Mn4+/Mn3+ Co3+/Co2+ Oads/(Oads+Olatt) Co/γ-Al2O3 — 1.261 0.577 Co3Mn1/γ-Al2O3 0.913 1.018 0.611 Co1Mn1/γ-Al2O3 0.839 0.807 0.605 Co1Mn3/γ-Al2O3 0.797 0.848 0.588 Mn/γ-Al2O3 0.635 — 0.601 -
[1] YANG P, FAN S K, CHEN Z Y, et al. Synthesis of Nb2O5 based solid superacid materials for catalytic combustion of chlorinated VOCs [J]. Applied Catalysis B:Environmental, 2018, 239: 114-124. doi: 10.1016/j.apcatb.2018.07.061 [2] LI H F, LU G Z, DAI Q G, et al. Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres [J]. Applied Catalysis B:Environmental, 2011, 102(3/4): 475-483. [3] 钱翌, 岳飞飞, 褚衍洋. 三氯乙烯环境污染修复技术研究进展 [J]. 环境化学, 2012, 31(9): 1335-1343. QIAN Y, YUE F F, CHU Y Y. Advances in environmental remediation technologies for trichloroethylene pollution [J]. Environmental Chemistry, 2012, 31(9): 1335-1343(in Chinese).
[4] TIAN M J, GUO X, DONG R, et al. Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso-macroporous CrOx/MnCo3Ox for 1, 2-dichloroethane destruction [J]. Applied Catalysis B:Environmental, 2019, 259: 118018. doi: 10.1016/j.apcatb.2019.118018 [5] HOLZER F, ROLAND U, KOPINKE F D. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 1. Accessibility of the intra-particle volume [J]. Applied Catalysis B:Environmental, 2002, 38(3): 163-181. doi: 10.1016/S0926-3373(02)00040-1 [6] VEERAPANDIAN S K P, YE Z P, GIRAUDON J M, et al. Plasma assisted Cu-Mn mixed oxide catalysts for trichloroethylene abatement in moist air [J]. Journal of Hazardous Materials, 2019, 379: 120781. doi: 10.1016/j.jhazmat.2019.120781 [7] DANG X Q, LI S J, YU X, et al. Kinetic characterization of adsorbed toluene removal involving hybrid material catalysts—[M/13X-γ-Al2O3 (M: Ag, Ce, Mn, and Co)] in a sequential non-thermal plasma system [J]. Chemical Engineering Research and Design, 2020, 155: 80-87. doi: 10.1016/j.cherd.2019.12.025 [8] NGUYEN DINH M T, GIRAUDON J M, VANDENBROUCKE A M, et al. Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air [J]. Journal of Hazardous Materials, 2016, 314: 88-94. doi: 10.1016/j.jhazmat.2016.04.027 [9] 姜理英, 张瑜芬, 胡俊, 等. NTP协同双金属锰基催化剂降解氯苯的性能研究 [J]. 环境科学学报, 2021, 41(3): 922-931. JIANG L Y, ZHANG Y F, HU J, et al. Removal of chlorobenzene by non-thermal plasma combined with bimetallic manganese-based catalyst [J]. Acta Scientiae Circumstantiae, 2021, 41(3): 922-931(in Chinese).
[10] SULTANA S, VANDENBROUCKE A M, MORA M, et al. Post plasma-catalysis for trichloroethylene decomposition over CeO2 catalyst: Synergistic effect and stability test [J]. Applied Catalysis B:Environmental, 2019, 253: 49-59. doi: 10.1016/j.apcatb.2019.03.077 [11] LIN F W, ZHANG Z M, LI N, et al. How to achieve complete elimination of Cl-VOCs: A critical review on byproducts formation and inhibition strategies during catalytic oxidation [J]. Chemical Engineering Journal, 2021, 404: 126534. doi: 10.1016/j.cej.2020.126534 [12] TODOROVA S, BLIN J L, NAYDENOV A, et al. Co3O4-MnOx oxides supported on SBA-15 for CO and VOCs oxidation [J]. Catalysis Today, 2020, 357: 602-612. doi: 10.1016/j.cattod.2019.05.018 [13] 白文文, 秦彩虹, 郑洋, 等. 介质阻挡放电联合锰基催化剂对乙酸乙酯的降解效果 [J]. 环境工程学报, 2020, 14(5): 1294-1303. doi: 10.12030/j.cjee.201907089 BAI W W, QIN C H, ZHENG Y, et al. Degradation of ethyl acetate by dielectric barrier discharge combined with manganese-based catalyst [J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1294-1303(in Chinese). doi: 10.12030/j.cjee.201907089
[14] ODA T, KURAMOCHI H, ONO R. Non-thermal plasma processing for dilute VOCs decomposition combined with the catalyst[C]. 11th International Conference on Electrostatic Precipitation. Hangzhou: Springer Berlin Heidelberg, 2009: 638-643. [15] ZHANG Z M, XIANG L, LIN F W, et al. Catalytic deep degradation of Cl-VOCs with the assistance of ozone at low temperature over MnO2 catalysts [J]. Chemical Engineering Journal, 2021, 426: 130814. doi: 10.1016/j.cej.2021.130814 [16] YAO X H, ZHANG J, LIANG X Y, et al. Niobium doping enhanced catalytic performance of Mn/MCM-41 for toluene degradation in the NTP-catalysis system [J]. Chemosphere, 2019, 230: 479-487. doi: 10.1016/j.chemosphere.2019.05.075 [17] BOUKHA Z, GONZÁLEZ-PRIOR J, de RIVAS B, et al. Synthesis, characterisation and behaviour of Co/hydroxyapatite catalysts in the oxidation of 1, 2-dichloroethane [J]. Applied Catalysis B:Environmental, 2016, 190: 125-136. doi: 10.1016/j.apcatb.2016.03.005 [18] SHI C, WANG Y, ZHU A M, et al. MnxCo3−xO4 solid solution as high-efficient catalysts for low-temperature oxidation of formaldehyde [J]. Catalysis Communications, 2012, 28: 18-22. doi: 10.1016/j.catcom.2012.08.003 [19] LI X, ZHENG J K, LIU S, et al. A novel wormhole-like mesoporous hybrid MnCoOx catalyst for improved ethanol catalytic oxidation [J]. Journal of Colloid and Interface Science, 2019, 555: 667-675. doi: 10.1016/j.jcis.2019.07.062 [20] 郭惠, 党小庆, 秦彩虹, 等. 低温等离子体催化降解甲苯的影响因素分析 [J]. 环境污染与防治, 2019, 41(12): 1422-1426. GUO H, DANG X Q, QIN C H, et al. Influencing factors analysis of toluene degradation by low temperature plasma catalysis [J]. Environmental Pollution & Control, 2019, 41(12): 1422-1426(in Chinese).
[21] 崔维怡, 王希越, 谭乃迪. 焙烧温度对Pt-FeOx/γ-Al2O3催化剂催化甲醛氧化性能的影响 [J]. 燃料化学学报, 2019, 47(8): 964-972. doi: 10.3969/j.issn.0253-2409.2019.08.009 CUI W Y, WANG X Y, TAN N D. Effect of calcination temperature on catalytic performance of Pt-FeOx/γ-Al2O3 catalysts for HCHO oxidation [J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 964-972(in Chinese). doi: 10.3969/j.issn.0253-2409.2019.08.009
[22] 陈春雨, 刘彤, 王卉, 等. 低温等离子体与MnOx/γ-Al2O3协同催化降解正己醛 [J]. 催化学报, 2012, 33(6): 941-951. CHEN C Y, LIU T, WANG H, et al. Removal of hexanal by non-thermal plasma and MnOx/γ-Al2O3 combination [J]. Chinese Journal of Catalysis, 2012, 33(6): 941-951(in Chinese).
[23] TANG W X, LI W H, LI D Y, et al. Synergistic effects in porous Mn–co mixed oxide nanorods enhance catalytic deep oxidation of benzene [J]. Catalysis Letters, 2014, 144(11): 1900-1910. doi: 10.1007/s10562-014-1340-3 [24] BO Z, ZHU J H, YANG S L, et al. Enhanced plasma-catalytic decomposition of toluene over Co–Ce binary metal oxide catalysts with high energy efficiency [J]. RSC Advances, 2019, 9(13): 7447-7456. doi: 10.1039/C9RA00794F [25] CAI T, HUANG H, DENG W, et al. Catalytic combustion of 1, 2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts [J]. Applied Catalysis B:Environmental, 2015, 166/167: 393-405. doi: 10.1016/j.apcatb.2014.10.047 [26] ZHOU G L, HE X L, LIU S, et al. Phenyl VOCs catalytic combustion on supported CoMn/AC oxide catalyst [J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 932-941. doi: 10.1016/j.jiec.2014.04.035 [27] LUO Y J, ZHENG Y B, ZUO J C, et al. Insights into the high performance of Mn-Co oxides derived from metal-organic frameworks for total toluene oxidation [J]. Journal of Hazardous Materials, 2018, 349: 119-127. doi: 10.1016/j.jhazmat.2018.01.053 [28] LIN X T, LI S J, HE H, et al. Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation [J]. Applied Catalysis B:Environmental, 2018, 223: 91-102. doi: 10.1016/j.apcatb.2017.06.071 [29] BIESINGER M C, BROWN C, MYCROFT J R, et al. X-ray photoelectron spectroscopy studies of chromium compounds [J]. Surface and Interface Analysis, 2004, 36(12): 1550-1563. doi: 10.1002/sia.1983 [30] 姚志伟, 黄武, 陈颖, 等. 低温等离子体结合锰基催化剂去除乙酸乙酯的研究 [J]. 环境科学学报, 2021, 41(6): 2311-2319. YAO Z W, HUANG W, CHEN Y, et al. Removal of ethyl acetate by non-thermal plasma combined with manganese-based catalysts [J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2311-2319(in Chinese).
[31] 于欣, 党小庆, 李世杰, 等. 单介质和双介质阻挡放电低温等离子体降解甲苯的比较 [J]. 环境工程学报, 2020, 14(4): 1033-1041. doi: 10.12030/j.cjee.201906002 YU X, DANG X Q, LI S J, et al. Comparison of single and double dielectric barrier discharge non-thermal plasma for toluene removal [J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 1033-1041(in Chinese). doi: 10.12030/j.cjee.201906002
[32] 朱金辉. 低温等离子体耦合Co-Ce二元金属氧化物催化剂降解甲苯基础研究[D]. 杭州: 浙江大学, 2020. ZHU J H. Non-thermal plasma combined with co-Ce binary metal oxide catalysts for toluene decomposition[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
[33] KIM H H, KIM J H, OGATA A. Microscopic observation of discharge plasma on the surface of zeolites supported metal nanoparticles [J]. Journal of Physics D:Applied Physics, 2009, 42(13): 135210. doi: 10.1088/0022-3727/42/13/135210 [34] LIANG W J, MA L, LIU H, et al. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst [J]. Chemosphere, 2013, 92(10): 1390-1395. doi: 10.1016/j.chemosphere.2013.05.042 [35] ZHENG C H, ZHU X B, GAO X, et al. Experimental study of acetone removal by packed-bed dielectric barrier discharge reactor [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2761-2768. doi: 10.1016/j.jiec.2013.11.004 [36] SHOU T Y, LI Y N, BERNARDS M T, et al. Degradation of gas-phase o-xylene via combined non-thermal plasma and Fe doped LaMnO3 catalysts: Byproduct control [J]. Journal of Hazardous Materials, 2020, 387: 121750. doi: 10.1016/j.jhazmat.2019.121750 [37] XU X X, WU J L, XU W C, et al. High-efficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal [J]. Catalysis Today, 2017, 281: 527-533. doi: 10.1016/j.cattod.2016.03.036 [38] YU X, DANG X Q, LI S J, et al. A comparison of in- and post-plasma catalysis for toluene abatement through continuous and sequential processes in dielectric barrier discharge reactors [J]. Journal of Cleaner Production, 2020, 276: 124251. doi: 10.1016/j.jclepro.2020.124251 [39] LI S J, DANG X Q, YU X, et al. High energy efficient degradation of toluene using a novel double dielectric barrier discharge reactor [J]. Journal of Hazardous Materials, 2020, 400: 123259. doi: 10.1016/j.jhazmat.2020.123259 [40] KIRKPATRICK M, FINNEY W, LOCKE B. Chlorinated organic compound removal by gas phase pulsed streamer Corona electrical discharge with reticulated vitreous carbon electrodes [J]. Plasmas and Polymers, 2003, 8(3): 165-177. doi: 10.1023/A:1024845721132 [41] VANDENBROUCKE A M, DINH M T N, GIRAUDON J M, et al. Qualitative by-product identification of plasma-assisted TCE abatement by mass spectrometry and Fourier-transform infrared spectroscopy [J]. Plasma Chemistry and Plasma Processing, 2011, 31(5): 707-718. doi: 10.1007/s11090-011-9310-7