-
锶是人体生理功能所必需的微量元素之一,对维持人体生理机能具有重要的意义[1-2]。各类岩石中几乎都含有锶元素,尤其在闪长岩、富钙花岗岩、黏土岩以及碳酸盐岩中相对富集,是锶元素物质来源的主要母岩[3]。刘庆宣等[4]发现, 矿泉水中Sr 的含量与含水层Sr 丰度存在正相关关系,并且碳酸盐岩地层含锶最高,碎屑岩地层次之。锶在地下水动力作用下迁移和转化,通过岩石矿物的风化作用、水解溶滤作用等进入地下水中[5-8]。
目前,滇东黔西地区富锶地下水的工作已取得了一定进展。张贵等[9]在梳理滇东岩溶高原矿泉水类型时指出,在有泥灰岩、泥质灰岩、砂泥岩夹层分布的碳酸盐岩区,岩溶作用对滇东矿泉水的形成具有影响作用, 并可形成特色的高矿化度富锶矿泉水。周长松等[10]在贵州打邦河流域关岭地区发现地表水和地下水中锶超常富集,达到了国家饮用天然矿泉水锶含量限值(0.2 mg·L−1),认为关岭组可能为本区地下水主要富锶地层,水-岩相互作用是本区地下水锶的主要来源途径。
滇东黔西地区地下水中锶较为富集,达到了锶矿泉水的含量限值。经初步判断,富锶地下水主要位于永宁镇组(T1yn)和关岭组(T2g)碳酸盐岩地层中,与周长松等[10]的发现较为一致。本文以滇东黔西地区典型岩溶流域为研究对象,深入分析该区富锶地下水的富集环境和形成机理,以期进一步为天然富锶矿泉水的开发利用提供科学依据。
滇东黔西典型岩溶流域地下水中锶富集特征及成因分析
Characteristics and genesis of strontium enrichment in groundwater of typical karst basins in Eastern Yunnan and Western Guizhou
-
摘要: 滇东黔西岔河岩溶流域地下水和地表水中锶超常富集,研究富锶地下水的分布特征和成因机理,可以为天然富锶矿泉水的开发利用提供支撑。通过对含水介质中锶元素含量、地下水分布和水化学特征的分析,结合氢氧同位素和87Sr/86Sr比值、离子比例系数和Piper三线图、Gibbs图解等方法,研究了地下水中Sr的来源和成因。结果表明,永宁镇组(T1yn)和关岭组(T2g)岩石中锶含量较高,是地下水中锶的主要来源层位。研究区地表水和地下水均以大气降雨补给为主,水化学类型主要为HCO3-Ca和HCO3-Ca·Mg型,优势阴阳离子为HCO3−、Ca2+和Mg2+。地表水和地下水水化学均受岩石风化作用的控制,溶滤作用、阳离子交换作用和人类活动综合影响了区内水体的组分特征。水-岩作用是锶在地下水中富集的主要途径,方解石的风化溶解是地下水中Sr的主要来源,白云石和石膏也有一定的贡献;阳离子交换作用不利于锶在地下水中的富集,人类活动有利于锶从碳酸盐岩中释放,但作用均较有限。Abstract: Strontium(Sr) in groundwater and surface water of Chahe karst basin in Western Guizhou and eastern Yunnan is extremely enriched. The study on the distribution characteristics and genetic mechanism of Sr-rich groundwater can provide support for the development and utilization of natural Sr-rich mineral water. Based on the analysis of strontium content in aquifer, groundwater distribution and hydro-chemical characteristics, combined with hydrogen and oxygen isotopes, 87Sr / 86Sr ratio, ion proportion coefficient, Piper diagram and Gibbs diagram, the source and genesis of Sr in groundwater were studied. The results show that both the Yongningzhen Formation (T1yn) and the Guanling Formation (T2g) have high Sr content and are the main source of Sr in groundwater. The surface water and groundwater in the study area are mainly supplied by rainfall, the hydro-chemical types of surface water and groundwater are HCO3-Ca and HCO3-Ca·Mg, and the dominant cations are HCO3−, Ca2+ and Mg2+. The hydro-chemical characteristics of surface water and groundwater are mainly controlled by rock weathering, and the solute composition of water in the area is affected by lixiviation, cation exchange and human activities. Water-rock interaction is the main way of Sr enrichment in groundwater, the weathering dissolution of limestone is the main source of Sr in groundwater, and the dissolution of dolomite and gypsum also contributes. Cation exchange is not conducive to the enrichment of Sr in groundwater, while human activities is conducive to the release of Sr from carbonate rocks, but both have limited effects.
-
Key words:
- East Yunnan and West Guizhou /
- karst basin /
- groundwater /
- strontium /
- isotopes /
- hydro-chemical analysis
-
表 1 不同地层岩石样品中Sr含量检测结果
Table 1. Sr assay data of rock samples in different stratum
地层
Stratum岩性
Lithology样品数量/组
Sample size锶含量/(mg·kg−1)
Strontium content锶平均值/地壳丰度
Average strontium/Crustal abundance最小值
Minimum最大值
Maximum平均值
MeanP1q-m 泥晶-细晶灰岩 8 12.9 170 110.28 0.30 P2β 玄武岩 7 79.8 553 282 0.76 P2l 粉砂岩、炭质泥岩、泥岩 7 42.4 406 228 0.62 T1f 粉砂岩、泥岩 7 127 245 186 0.50 T1yn 泥晶灰岩夹灰质白云岩 9 85.7 3030 733.3 1.98 T2g 泥晶灰岩 11 83.8 1949 750 2.03 注:地壳中Sr元素丰度为 370 mg·kg−1.The abundance of Sr in the crust is 370 mg·kg-1. 表 2 岔河流域地表水、地下水水化学特征
Table 2. Hydro-chemistry of surface water and groundwater in Chahe River basin
样号
Sample含水岩组
Aquifer grouppH 离子浓度/(mg·L−1)Ion concentration TDS Ca2+ K+ Mg2+ Na+ Cl− SO42− HCO3− NO3−N F− Sr2+ SiO2 QS108 P1q-m 7.8 166 52.7 0.28 2.56 1.09 0.889 22 148 1.76 0.05 0.05 6.26 QS16 7.91 156 57.8 0.186 1.06 0.203 0.72 6.65 162 2.03 0.00 0.04 2.98 QS139 7.7 184 59.91 0.62 2.13 0.9 1.4 21.6 163.86 8.65 0.02 0.11 6.87 QS159 7.53 172 52.39 0.41 4.69 0.56 0.43 8.87 173.31 4.27 0.09 0.08 8.28 平均值 7.74 169.5 55.7 0.37 2.61 0.69 0.86 14.78 161.79 4.18 0.04 0.07 6.1 QS85 T1yn-T2g 7.53 175 50.4 1.78 5.96 1.13 2.46 15.4 156 2.96 0.09 0.45 5.2 QS88 7.09 316 105 0.9 7.87 0.47 0.85 11.7 348 1.65 0.09 0.56 5.69 QS92 7.32 184 61.5 0.15 2.14 0.59 0.45 8.55 191 1.84 0.06 0.52 4.8 QS93 7.2 290 77.6 0.64 18.6 1.68 0.56 18.2 317 1.63 0.17 0.23 9.03 QS15 7.66 220 71.4 0.89 7.13 1.05 3.46 14.4 203 3.3 0.09 1.31 5.65 QS23 7.4 200 56.8 0.75 9.76 2.37 1.68 4.44 208 3.21 0.05 0.89 11.14 QS68 7.4 184 59.6 0.95 4.57 0.54 1.79 15 187 2.19 0.11 0.56 4.63 QS70 7.87 176 37.2 1.77 16.8 1.63 1.92 10.2 187 1.58 0.10 0.07 6.83 QS87 7.34 250 82.5 0.55 6.02 0.62 1.71 10.9 263 2.7 0.10 0.93 6.42 QS97 7.18 326 104 0.58 9.85 0.79 1.13 24 337 2.21 0.21 1.95 5.85 平均值 7.4 232.1 70.6 0.9 8.87 1.09 1.6 13.28 239.7 2.33 0.11 0.75 6.53 QS94 P2l、P2β、T1f 7.01 92 15.7 0.41 4.79 4.02 1.97 16.4 50 2.99 0.09 0.09 11.63 QS86 P2l、P2β、T1f 7.15 174 37.6 4.07 6.12 6.43 2.8 24.8 119 3.83 0.11 0.13 12.52 QS89 7.78 156 48.6 0.37 2.51 2.52 0.678 15 148 1.53 0.06 0.56 6.91 平均值 7.31 140.67 33.97 1.62 4.47 4.32 1.82 18.73 105.67 2.78 0.09 0.26 10.35 DBS30 地表水 8.21 276 72.1 1.81 15.3 2.97 3.05 48.5 224 1.82 0.20 — — DBS80 7.86 250 65.3 4.19 8.9 7.75 7.1 28.7 233 1.17 0.15 0.66 5.12 DBS81 8.11 258 67.4 3.09 10.4 4.18 6.01 28.6 213 3.26 0.22 0.78 4.63 DBS84 8.2 230 59 1.22 7.93 7.26 3.33 39.8 182 2.66 0.10 — — DBS91 7.68 182 55 0.92 4.42 2.31 1.33 14 167 2.76 0.11 — — DBS92 8.1 228 62 1.42 10.2 2.91 2.62 28.4 206 2.31 0.17 — — DBS93 8.04 227 58.2 1.33 11.6 2.88 2.66 32.9 196 2.42 0.21 — — DBS99 8.45 200 56.1 1.4 6.51 3.88 2.53 27.2 170 2.04 0.09 — — DBS101 8.22 208 56.5 1.35 8.54 2.9 2.48 24.3 189 2.15 0.14 — — DBS138 7.61 192 61.67 0.77 3.21 1.59 1.88 15.9 179.61 4.66 0.03 0.23 5.81 平均值 8.05 225.1 61.33 1.75 8.7 3.86 3.3 28.83 195.96 2.53 0.14 — — 表 3 岔河流域地下水各指标相关关系
Table 3. Correlation coefficients between major ions of groundwater in Chahe River basin
pH TDS Ca2+ K+ Mg2+ Na+ Cl− SO42− HCO3− NO3−N F− Sr2+ SiO2 pH 1 TDS −0.38 1 Ca2+ −0.24 0.94** 1 K+ −0.19 −0.05 −0.26 1 Mg2+ −0.22 0.49* 0.20 0.23 1 Na+ −0.35 −0.35 −0.57* 0.69** 0.09 1 Cl− −0.06 −0.16 −0.26 0.61** 0.10 0.42 1 SO42− −0.22 0.14 0.03 0.37 0.01 0.39 0.21 1 HCO3− −0.30 0.98** 0.94** −0.18 0.510* −0.48 −0.29 −0.04 1 NO3−N 0.08 −0.19 −0.15 0.11 −0.29 0.08 0.21 0.25 −0.27 1 F− −0.58* 0.61* 0.39 0.21 0.65** 0.11 0.10 0.42 0.54* −0.29 1 Sr2+ −0.26 0.62** 0.65** −0.14 0.15 −0.23 0.22 0.08 0.56* −0.16 0.51* 1 SiO2 −0.48 −0.20 −0.44 0.44 0.28 0.83** 0.24 0.22 −0.29 0.22 0.20 −0.20 1 注:**表示在0.01 水平(双侧)上显著相关,*表示在 0.05 水平(双侧)上显著相关.
Note:* * Indigenous at 0.01 level ( bilateral ), * Indigenous at 0.05 level ( bilateral ).表 4 地表水、地下水同位素数据
Table 4. Isotopic sample data of surface water and groundwater
样号
Sample地层
Stratum87Sr/86Sr δ18O/‰ δD/‰ d‰ QS16 P1q-m 0.7079 −10.48 −72.34 11.5 QS108 0.7074 −10.51 −71.57 12.5 QS15 T1yn-T2g 0.7083 −9.95 −66.40 13.1 QS23 0.7080 −10.19 −69.69 11.8 QS97 0.7079 −9.73 −67.43 10.4 QS89 T1f 0.7078 −10.31 −70.91 11.6 DBS30 地表水 0.7080 −9.82 −67.67 10.9 DBS93 0.7080 −10.15 −69.08 12.1 DBS101 0.7081 −9.62 −65.93 11.0 -
[1] 王增银, 刘娟, 王涛, 等. 锶元素地球化学在水文地质研究中的应用进展 [J]. 地质科技情报, 2003, 22(4): 91-95. WANG Z Y, LIU J, WANG T, et al. Application advances of strontium geochemistry in hydrogeology research [J]. Geological Science and Technology Information, 2003, 22(4): 91-95(in Chinese).
[2] 苏春田, 黄晨晖, 邹胜章, 等. 新田县地下水锶富集环境及来源分析 [J]. 中国岩溶, 2017, 36(5): 678-683. SU C T, HUANG C H, ZOU S Z, et al. Enrichment environment and sources of strontium of groundwater in Xintian County, Hunan Province [J]. Carsologica Sinica, 2017, 36(5): 678-683(in Chinese).
[3] 张彦林, 丁宏伟, 付东林, 等. 甘肃省锶矿泉水的富集环境及其形成机理研究 [J]. 中国地质, 2020, 47(6): 1688-1701. doi: 10.12029/gc20200607 ZHANG Y L, DING H W, FU D L, et al. A study of enrichment environment and formation mechanism of strontium mineral water in Gansu Province [J]. Geology in China, 2020, 47(6): 1688-1701(in Chinese). doi: 10.12029/gc20200607
[4] 刘庆宣, 王贵玲, 张发旺. 矿泉水中微量元素锶富集的地球化学环境 [J]. 水文地质工程地质, 2004, 31(6): 19-23. doi: 10.3969/j.issn.1000-3665.2004.06.004 LIU Q X, WANG G L, ZHANG F W. Geochemical environment of trace element strontium (Sr) enriched in mineral waters [J]. Hydrogeology and Engineering Geology, 2004, 31(6): 19-23(in Chinese). doi: 10.3969/j.issn.1000-3665.2004.06.004
[5] 范伟, 杨悦锁, 冶雪艳, 等. 青肯泡地区地下水中锶富集的水文地球化学环境特征及成因分析 [J]. 吉林大学学报(地球科学版), 2010, 40(2): 349-355,367. doi: 10.13278/j.cnki.jjuese.2010.02.004 FAN W, YANG Y S, YE X Y, et al. Hydrogeochemical and environmental characteristics of strontium-enrichment in groundwater and its genesis in qingken lake area [J]. Journal of Jilin University (Earth Science Edition), 2010, 40(2): 349-355,367(in Chinese). doi: 10.13278/j.cnki.jjuese.2010.02.004
[6] 赵光帅, 苏春田, 潘晓东, 等. 湖南新田锶矿泉水文地球化学分带特征分析 [J]. 中国岩溶, 2019, 38(6): 858-866. ZHAO G S, SU C T, PAN X D, et al. Hydrogeochemical zoning characteristics of the strontium mineral spring in Xintian County, Hunan Province [J]. Carsologica Sinica, 2019, 38(6): 858-866(in Chinese).
[7] 苏宏建, 杨瑞, 多晓松, 等. 承德市矿泉水资源分布规律及其形成的地球化学条件 [J]. 化工矿产地质, 2019, 41(1): 27-34. doi: 10.3969/j.issn.1006-5296.2019.01.006 SU H J, YANG R, DUO X S, et al. Distribution rules and geochemical conditions of mineral water resources in Chengde city [J]. Geology of Chemical Minerals, 2019, 41(1): 27-34(in Chinese). doi: 10.3969/j.issn.1006-5296.2019.01.006
[8] 朱雪芹, 刘文波, 李志明, 等. 承德地区天然含锶矿泉水空间分布及特征分析 [J]. 水文地质工程地质, 2020, 47(6): 65-73. doi: 10.16030/j.cnki.issn.1000-3665.202009007 ZHU X Q, LIU W B, LI Z M, et al. Distribution and characterization analyses of strontium-bearing mineral spring water in the Chengde region [J]. Hydrogeology & Engineering Geology, 2020, 47(6): 65-73(in Chinese). doi: 10.16030/j.cnki.issn.1000-3665.202009007
[9] 张贵, 张华, 王波, 等. 滇东岩溶高原矿泉水类型及地质控制 [J]. 地球学报, 2021, 42(3): 333-340. doi: 10.3975/cagsb.2020.073101 ZHANG G, ZHANG H, WANG B, et al. Mineral water types and geological control in Karst plateau of eastern Yunnan [J]. Acta Geoscientica Sinica, 2021, 42(3): 333-340(in Chinese). doi: 10.3975/cagsb.2020.073101
[10] 周长松, 邹胜章, 夏日元, 等. 贵州关岭地区发现地表和地下水体锶超常富集 [J]. 中国地质, 2021, 48(3): 961-962. ZHOU C S, ZOU S Z, XIA R Y, et al. Extreme enrichment of strontium discovered in surface water and groundwater in the Guanling area of Guizhou Province [J]. Geology in China, 2021, 48(3): 961-962(in Chinese).
[11] 杨郧城, 文冬光, 侯光才, 等. 鄂尔多斯白垩系自流水盆地地下水锶同位素特征及其水文学意义 [J]. 地质学报, 2007, 81(3): 405-412. doi: 10.3321/j.issn:0001-5717.2007.03.012 YANG Y C, WEN D G, HOU G C, et al. Characteristic of strontium isotope of groundwater and its application on hydrology in the Ordos Cretaceous artesian basin [J]. Acta Geologica Sinica, 2007, 81(3): 405-412(in Chinese). doi: 10.3321/j.issn:0001-5717.2007.03.012
[12] 涂春霖, 马一奇, 令狐昌卫, 等. 滇东高原煤矿聚集区扎外河流域水化学特征及演化规律 [J]. 科学技术与工程, 2021, 21(29): 12470-12480. doi: 10.3969/j.issn.1671-1815.2021.29.016 TU C L, MA Y Q, LINGHU C W, et al. Hydro-chemical characteristics and evolution of Zhawai river basin in coal mining area of eastern Yunnan plateau [J]. Science Technology and Engineering, 2021, 21(29): 12470-12480(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.29.016
[13] 孙厚云, 卫晓锋, 甘凤伟, 等. 滦河流域中上游富锶地下水成因类型与形成机制 [J]. 地球学报, 2020, 41(1): 65-79. doi: 10.3975/cagsb.2019.061701 SUN H Y, WEI X F, GAN F W, et al. Genetic type and formation mechanism of strontium-rich groundwater in the upper and middle reaches of Luanhe river basin [J]. Acta Geoscientica Sinica, 2020, 41(1): 65-79(in Chinese). doi: 10.3975/cagsb.2019.061701
[14] 耿新新, 陈立, 黄正国, 等. 吴灵地区地下水同位素特征及可更新能力研究 [J]. 人民黄河, 2017, 39(10): 80-83,88. doi: 10.3969/j.issn.1000-1379.2017.10.017 GENG X X, CHEN L, HUANG Z G, et al. Study on groundwater isotope characteristics and renewable capacity in Wuling region [J]. Yellow River, 2017, 39(10): 80-83,88(in Chinese). doi: 10.3969/j.issn.1000-1379.2017.10.017
[15] 袁建飞, 邓国仕, 徐芬, 等. 毕节市北部岩溶地下水水文地球化学特征 [J]. 水文地质工程地质, 2016, 43(1): 12-21. doi: 10.16030/j.cnki.issn.1000-3665.2016.01.03 YUAN J F, DENG G S, XU F, et al. Hydrogeochemical characteristics of Karst groundwater in the northern part of the city of Bijie [J]. Hydrogeology & Engineering Geology, 2016, 43(1): 12-21(in Chinese). doi: 10.16030/j.cnki.issn.1000-3665.2016.01.03
[16] 张明亮. 滇东黔西地下水氢氧同位素特征 [J]. 四川地质学报, 2019, 39(3): 508-511. doi: 10.3969/j.issn.1006-0995.2019.03.032 ZHANG M L. The δ18O and δD values of groundwater in east Yunnan and west Guizhou [J]. Acta Geologica Sichuan, 2019, 39(3): 508-511(in Chinese). doi: 10.3969/j.issn.1006-0995.2019.03.032
[17] 韩振华, 张燕飞, 王慧琪, 等. 干旱半干旱荒漠化草原区降水-地表水-地下水同位素分布特征: 以达尔罕茂明安联合旗为例 [J]. 科学技术与工程, 2020, 20(28): 11463-11471. doi: 10.3969/j.issn.1671-1815.2020.28.010 HAN Z H, ZHANG Y F, WANG H Q, et al. Characteristics of stable isotopes in precipitation, surface water and groundwater in the arid and semi-arid desertification steppe: A case study in the darhan Maomingan joint banner [J]. Science Technology and Engineering, 2020, 20(28): 11463-11471(in Chinese). doi: 10.3969/j.issn.1671-1815.2020.28.010
[18] 杨楠, 苏春利, 曾邯斌, 等. 基于水化学和氢氧同位素的兴隆县地下水演化过程研究 [J]. 水文地质工程地质, 2020, 47(6): 154-162. doi: 10.16030/j.cnki.issn.1000-3665.202005027 YANG N, SU C L, ZENG H B, et al. Evolutional processes of groundwater in Xinglong County based on hydrochemistry and hydrogen and oxygen isotopes [J]. Hydrogeology & Engineering Geology, 2020, 47(6): 154-162(in Chinese). doi: 10.16030/j.cnki.issn.1000-3665.202005027
[19] 杨森, 李义连, 姜凤成, 等. 高店子幅水化学特征及水质评价 [J]. 地质科技情报, 2019, 38(2): 226-234. doi: 10.19509/j.cnki.dzkq.2019.0226 YANG S, LI Y L, JIANG F C, et al. Hydrochemical characteristics and water quality assessment of surface water and groundwater in gaodianzi map-area [J]. Geological Science and Technology Information, 2019, 38(2): 226-234(in Chinese). doi: 10.19509/j.cnki.dzkq.2019.0226
[20] 孙英, 周金龙, 魏兴, 等. 巴楚县平原区地下水水化学特征及成因分析 [J]. 环境化学, 2019, 38(11): 2601-2609. SUN Y, ZHOU J L, WEI X, et al. Hydrochemical characteristics and cause analysis of groundwater in the plain area of Bachu County [J]. Environmental Chemistry, 2019, 38(11): 2601-2609(in Chinese).
[21] 吴璇, 宋一心, 王金晓, 等. 山东省柴汶河上游地区地下水化学特征分析 [J]. 环境化学, 2021, 40(7): 2125-2134. doi: 10.7524/j.issn.0254-6108.2020022701 WU X, SONG Y X, WANG J X, et al. Groundwater hydrogeochemical characteristics in the up reaches of Chaiwen River, Shandong Province [J]. Environmental Chemistry, 2021, 40(7): 2125-2134(in Chinese). doi: 10.7524/j.issn.0254-6108.2020022701
[22] 高旭波, 向绚丽, 侯保俊, 等. 水化学—稳定同位素技术在岩溶水文地质研究中的应用 [J]. 中国岩溶, 2020, 39(5): 629-636. GAO X B, XIANG X L, HOU B J, et al. Application of hydrochemistry coupled with stable isotopes in the study of Karst water hydrogeology [J]. Carsologica Sinica, 2020, 39(5): 629-636(in Chinese).
[23] 王涛, 王增银. 桂林地区岩溶水87Sr/ 86Sr特征 [J]. 地球学报, 2005, 26(26): 299-302. WANG T, WANG Z Y. 87Sr/ 86Sr charactierstics of kasrt water in Guilin Area [J]. Acta Geoscientica Sinica, 2005, 26(26): 299-302(in Chinese).
[24] 郎赟超, 刘丛强, 韩贵琳, 等. 贵阳市区地表/地下水化学与锶同位素研究 [J]. 第四纪研究, 2005, 25(5): 655-662. doi: 10.3321/j.issn:1001-7410.2005.05.015 LANG Y C, LIU C Q, HAN G L, et al. Characterization of water-rock interaction and pollution of karstic hydrological system: A study on water chemistry and Sr isotope of surface/ground water of the Guiyang area [J]. Quaternary Sciences, 2005, 25(5): 655-662(in Chinese). doi: 10.3321/j.issn:1001-7410.2005.05.015
[25] 李学先. 酸性矿山废水影响下喀斯特流域水文地球化学特征及演化规律研究[D]. 贵阳: 贵州大学, 2018. LI X X. Study on hydrogeochemical characteristics and evolution rules of Karst basin under the effects of acid mine waste water[D]. Guiyang: Guizhou University, 2018(in Chinese).
[26] 叶慧君, 张瑞雪, 吴攀, 等. 六盘水矿区关键带岩溶水水化学演化特征及驱动因子 [J]. 地球科学, 2019, 44(9): 2887-2898. YE H J, ZHANG R X, WU P, et al. Characteristics and driving factor of hydrochemical evolution in Karst water in the critical zone of Liupanshui mining area [J]. Earth Science, 2019, 44(9): 2887-2898(in Chinese).
[27] 万利勤, 徐慧珍, 殷秀兰, 等. 济南岩溶地下水化学成分的形成 [J]. 水文地质工程地质, 2008, 35(3): 61-64. doi: 10.3969/j.issn.1000-3665.2008.03.016 WAN L Q, XU H Z, YIN X L, et al. Formation of hydrochemistry components of Karst groundwater in Jinan [J]. Hydrogeology & Engineering Geology, 2008, 35(3): 61-64(in Chinese). doi: 10.3969/j.issn.1000-3665.2008.03.016
[28] 苏春田, 聂发运, 邹胜章, 等. 湖南新田富锶地下水水化学特征与成因分析 [J]. 现代地质, 2018, 32(3): 554-564. doi: 10.19657/j.geoscience.1000-8527.2018.03.13 SU C T, NIE F Y, ZOU S Z, et al. Hydrochemical characteristics and formation mechanism of strontium-rich groundwater in Xintian County, Hunan Province [J]. Geoscience, 2018, 32(3): 554-564(in Chinese). doi: 10.19657/j.geoscience.1000-8527.2018.03.13
[29] 唐春雷, 郑秀清, 梁永平. 龙子祠泉域岩溶地下水水化学特征及成因 [J]. 环境科学, 2020, 41(5): 2087-2095. doi: 10.13227/j.hjkx.201910078 TANG C L, ZHENG X Q, LIANG Y P. Hydrochemical characteristics and formation causes of ground Karst water systems in the longzici spring catchment [J]. Environmental Science, 2020, 41(5): 2087-2095(in Chinese). doi: 10.13227/j.hjkx.201910078
[30] 杨芬, 高柏, 葛勤, 等. 信江流域地下水水化学特征及形成机制 [J]. 科学技术与工程, 2021, 21(9): 3505-3512. doi: 10.3969/j.issn.1671-1815.2021.09.010 YANG F, GAO B, GE Q, et al. Hydro-chemical characteristics and formation mechanism of groundwater in Xinjiang river basin [J]. Science Technology and Engineering, 2021, 21(9): 3505-3512(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.09.010