-
地表径流有组织下渗不仅是恢复开发前水文特征的重要手段,也是控制地表径流污染的有效途径。与其他污染物不同,地表径流重金属具有毒性大、易富集、不可降解等特点,可通过吸附、沉淀、络合等方式固定在下渗设施土壤中[1-2]。当环境因子发生变化时,长期积蓄在土壤中的重金属可发生再释放、再迁移,对土壤、地下水等环境造成难以控制的危害。因此,控制下渗设施中土壤已积蓄重金属的再释放迁移对保护人类健康、维护生态系统安全具有重要意义。
受水动力和化学条件影响,径流下渗过程中土壤会释放大量可移动胶体(1 nm—10 µm)[3-4],这些胶体可以通过离子交换吸附或络合-螯合等形式与重金属结合,成为土壤已积蓄重金属再迁移的载体。张维等[5]研究发现,降雨可引起紫色土坡耕地裂隙潜流中胶体颗粒浓度升高至7倍;Luo等[6]研究表明,虽然土壤胶体对钒(Ⅴ)的吸附量可达238.1 mg·g−1,但在强酸、强碱和高离子强度条件时吸附量会显著降低。Yin等[7]发现,在土壤中80%以上的Pb离子以胶体(0.45—8 μm)-Pb复合形式在土壤中向下迁移。因此,研究降雨入渗对下渗设施中土壤胶体-重金属的共释放迁移影响,对有效控制下渗设施中土壤已积蓄重金属的再释放迁移具有重要意义。
笔者课题组已对运行多年的下渗设施进行了系列研究,发现下渗介质中Cu2+、Pb2+和Cd2+累积量最多[8]。在前期研究的基础上,本文考察降雨入渗对下渗设施土壤胶体-重金属共释放迁移的影响,并探讨其响应因素,以期为下渗设施中土壤重金属在地下环境中的迁移风险评估提供支撑。
降雨入渗对下渗设施土壤胶体-重金属共释放迁移的影响
Influence of rainfall infiltration on soil colloids-heavy metals co-release and co-migration in infiltration column
-
摘要: 以下渗设施土壤作为介质搭建模拟下渗柱,考察降雨入渗对土壤胶体与Pb、Cu和Cd共释放迁移的影响。结果表明,降雨入渗会引起土壤胶体与重金属Cu、Pb和Cd同步释放迁移;Zeta电位和RMV值结果表明,与重金属结合后土壤胶体可移动性减弱,迁移能力降低;降雨初期土壤胶体与重金属的共释放迁移作用较明显,随降雨历时增加两者的释放量均逐渐降低至稳定;土壤胶体-重金属共释放迁移量随降雨强度增大、入渗水Na+浓度减小而增加,随入渗水pH升高呈先增加后降低趋势;且土壤胶体粒径越小,其携带重金属离子迁移能力越强。Abstract: A simulated infiltration column filling with the soil collected from infiltration facilities was used to investigate the effect of rainfall infiltration on the co-release and co-migration of soil colloids with Pb, Cu and Cd. The results showed that rainfall infiltration caused the simultaneous release and migration of soil colloids and heavy metals (Cu, Pb and Cd). The results of Zeta potential and RMV values indicated that the movement and migration ability of soil colloids are weakened. The phenomenon of co-release and co-migration of soil colloids and heavy metals were obvious at the beginning of rainfall, and then gradually decreased to stable with the increase of rainfall duration. The co-release and co-migration content of soil colloids and heavy metals increased with the increase of rainfall intensity and the decrease of Na+ concentration in infiltrated water, and firstly increased and then decreased with the increase of pH values of infiltrated water. The soil colloids with small particle size were more capable of carrying heavy metals to migrate.
-
Key words:
- rainfall infiltration /
- soil colloids /
- heavy metals /
- co-release and co-migration
-
表 1 土壤胶体和土壤胶体-重金属悬浊液RMV值
Table 1. RMV values of soil colloids and soil colloids-heavy metals
悬浊液种类
Type of suspensionRMV值
RMV value悬浊液种类
Type of suspensionRMV值
RMV value0.45—10 μm土壤胶体 0.359 0.2—0.45 μm土壤胶体 0.710 0.45—10 µm土壤胶体-Pb 0.326 0.2—0.45 μm土壤胶体-Pb 0.606 0.45—10 µm土壤胶体-Cu 0.282 0.2—0.45 μm土壤胶体-Cu 0.564 0.45—10 µm土壤胶体-Cd 0.303 0.2—0.45 μm土壤胶体-Cd 0.588 -
[1] SUN X L, DAVIS A P. Heavy metal fates in laboratory bioretention systems [J]. Chemosphere, 2007, 66(9): 1601-1609. doi: 10.1016/j.chemosphere.2006.08.013 [2] MUTHANNA T M, VIKLANDER M, GJESDAHL N, et al. Heavy metal removal in cold climate bioretention [J]. Water, Air, and Soil Pollution, 2007, 183(1 - 4): 391-402. [3] ZHANG W, TANG X Y, XIAN Q S, et al. A field study of colloid transport in surface and subsurface flows [J]. Journal of Hydrology, 2016, 542: 101-114. doi: 10.1016/j.jhydrol.2016.08.056 [4] ZHUANG J, MCCARTHY J F, TYNER J S, et al. In situ colloid mobilization in Hanford sediments under unsaturated transient flow conditions: effect of irrigation pattern [J]. Environmental Science & Technology, 2007, 41(9): 3199-3204. [5] 张维, 唐翔宇, 鲜青松. 紫色土坡耕地裂隙潜流的产流机理与胶体颗粒迁移 [J]. 环境科学研究, 2017, 30(12): 1919-1926. ZHANG W, TANG X Y, XIAN Q S. Mechanisms of fracture flow generation and colloid transport in a purple soil sloping farmland [J]. Research of Environmental Sciences, 2017, 30(12): 1919-1926(in Chinese).
[6] LUO X H, YU L, WANG C Z, et al. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions [J]. Chemosphere, 2017, 169: 609-617. doi: 10.1016/j.chemosphere.2016.11.105 [7] YIN X Q, GAO B, MA L Q, et al. Colloid-facilitated Pb transport in two shooting-range soils in Florida [J]. Journal of Hazardous Materials, 2010, 177(1-3): 620-625. [8] 杜晓丽, 梁卉, 朱英杰, 等. 博大大厦停车场生物滞留系统重金属累积污染风险评价 [J]. 环境工程, 2019, 37(7): 93-98. DU X L, LIANG H, ZHU Y J, et al. Risk assessment of heavy metals in bioretention of the parking lot of boda mansion [J]. Environmental Engineering, 2019, 37(7): 93-98(in Chinese).
[9] DU X L, LIANG H, FANG X, et al. Characteristics of colloids and their affinity for heavy metals in road runoff with different traffic in Beijing, China [J]. Environmental Science and Pollution Research, 2021, 28(16): 20082-20092. doi: 10.1007/s11356-020-12020-3 [10] 商书波. 包气带中的土壤可移动胶体及对重金属迁移影响的研究[D]. 长春: 吉林大学, 2008. SHANG S B. Study on the impact of soil colloid on heavy metals migration in vadose zone[D]. Changchun: Jilin University, 2008(in Chinese).
[11] 朱英杰. 生物滞留介质累积—释放重金属特性及污染风险评价[D]. 北京: 北京建筑大学, 2019. ZHU Y J. Accumulation and release characteristics of heavy metals by bioretention medias and pollution risk assessment[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019(in Chinese).
[12] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012. ZHANG G L, GONG Z T. Soil survey laboratory methods[M]. Beijing: Science Press, 2012(in Chinese).
[13] WILLIAMS J R, ARNOLD J G. A system of erosion—sediment yield models [J]. Soil Technology, 1997, 11(1): 43-55. doi: 10.1016/S0933-3630(96)00114-6 [14] 吕俊佳. 土壤胶体及菲在饱和多孔介质中运移作用研究[D]. 阜新: 辽宁工程技术大学, 2013. LYU J J. Study on soil colloid and phenanthrene transportation through saturated porous media[D]. Fuxin: Liaoning Technical University, 2013(in Chinese).
[15] LAMBERT J F. Organic pollutant adsorption on clay minerals[M]//Developments in Clay Science. Amsterdam: Elsevier, 2018: 195-253. [16] YANG H, ZHANG Y, OUYANG J. Physicochemical properties of halloysite[M]//Developments in Clay Science. Amsterdam: Elsevier, 2016: 67-91. [17] DU X L, ZHU Y J, HAN Q, et al. The influence of traffic density on heavy metals distribution in urban road runoff in Beijing, China [J]. Environmental Science and Pollution Research International, 2019, 26(1): 886-895. doi: 10.1007/s11356-018-3685-4 [18] LI C L, LIU M, HU Y M, et al. Characterization and first flush analysis in road and roof runoff in Shenyang, China [J]. Water Science and Technology, 2014, 70(3): 397-406. doi: 10.2166/wst.2014.203 [19] SUN Y L, PAN D Q, WEI X Y, et al. Insight into the stability and correlated transport of kaolinite colloid: Effect of pH, electrolytes and humic substances [J]. Environmental Pollution, 2020, 266: 115189. doi: 10.1016/j.envpol.2020.115189 [20] ZHAO Y P, GU X Y, GAO S X, et al. Adsorption of tetracycline (TC) onto montmorillonite: Cations and humic acid effects [J]. Geoderma, 2012, 183 - 184: 12-18. doi: 10.1016/j.geoderma.2012.03.004 [21] 佃柳, 郑祥, 郁达伟, 等. 合流制管道溢流污染的特征与控制研究进展 [J]. 水资源保护, 2019, 35(3): 76-83,94. doi: 10.3880/j.issn.1004-6933.2019.03.013 DIAN L, ZHENG X, YU D W, et al. Research progress on characteristics and control of combined sewer overflows pollution [J]. Water Resources Protection, 2019, 35(3): 76-83,94(in Chinese). doi: 10.3880/j.issn.1004-6933.2019.03.013