膜接触法捕集生物质气CO2的研究进展
Research progress of membrane contactor technology on CO2 Capture
-
摘要: 生物质气中CO2捕集及CH4的回收利用具有巨大经济价值和环境效益,受到各领域的广泛关注.基于中空纤维膜的气-液膜接触技术以其效率高、能耗少和操作灵活等优势被认为是CO2捕集领域的重大突破.本文以中空纤维膜材料为中心,回顾了近十年来无机膜、传统有机聚合膜、有机微孔聚合膜、混合基质膜和固定载体膜的研究和发展,论述了各类中空纤维膜的CO2捕集性能以及当前面临的挑战.同时从膜润湿、吸收剂以及工艺条件等方面分析了影响CO2分离性能的主要因素.并提出开发低成本、高CO2捕集性能和高稳定性的新型中空纤维膜以及推进膜的中试和示范试点工程作为未来发展的主流方向.Abstract: CO2 capture and CH4 recovery from biomass gas have great economic value and environmental benefit, and they have been widely concerned in various fields. Gas-liquid membrane contactor technology based on hollow fiber membrane is considered a major breakthrough in the field of CO2 capture due to its high separation efficiency, low energy consumption and flexible operation. Focusing on hollow fiber membrane materials, this paper reviewed detailly about the research and development of inorganic membranes, organic polymer membranes, mixed matrix membranes, and fixed-site-carrier membranes in the past decade, and introduced the gas separation performance and current challenges of various hollow fiber membranes, respectively. At the same time, the main factors (membrane wetting, absorbent and operation conditions) affecting CO2 separation performance of the hollow fiber membrane contactor were analyzed. This paper proposes that future research should focus on creating new hollow fiber membranes with low-cost, high performance of CO2 separation, high stability and the development of the membranes with excellent performance for pilot test.
-
Key words:
- membrane contactor /
- membranes /
- bioenergy /
- CO2 capture /
- CH4 purification
-
-
[1] BAENA-MORENO F M, RODRIGUEZ-GALAN M, VEGA F, et al. Review:recent advances in biogas purifying technologies[J]. International Journal of Green Energy, 2019, 16(1/2/3/4/5):401-412. [2] MANSOURIZADEH A. Experimental study of CO2 absorption/stripping via PVDF hollow fiber membrane contactor[J]. Chemical Engineering Research & Design, 2012, 90(4):555-562. [3] XU Y L, GOH K, WANG R, et al. A review on polymer-based membranes for gas-liquid membrane contacting processes:Current challenges and future direction[J]. Separation and Purification Technology, 2019, 229:115791. [4] PENZA M, SURIANO D, CASSANO G et al. A case-study of microsensors for landfill air-pollution monitoring applications[J]. Urban Climate, 2015,14:351-369. [5] 刘翠玲, 张小东, 王永胜. 重视城市生活垃圾填埋气利用走垃圾资源化道路[J].图书情报导刊, 2008, 18(9):65-66. LIU C L, ZHANG X D, WANG R S. Paying attention to the utilization of the landfill gas (LFG) from the urban household garbage[J]. Journal of Library and Information Science, 2008, 18(9):65-66(in Chinese).
[6] SCHOLES C A, KENTISH S E, STEVENS G W. The effect of condensable minor components on the gas separation performance of polymeric membranes for carbon dioxide capture[J]. Energy Procedia, 2009, 1:311-317. [7] ROBESON L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2):390-400. [8] ZHANG Y, SUNARSO J, LIU S M, et al. Current status and development of membranes for CO2/CH4 separation:A review[J]. International Journal of Greenhouse Gas Control, 2013, 12:84-107. [9] MUHAMMAD M, YEONG Y F, LAU K K, et al. Issues and challenges in the development of deca-dodecasil 3 rhombohedral membrane in CO2 capture from natural gas[J]. Separation and Purification Reviews, 2015, 44(4):331-340. [10] MAGNONE E, LEE H J, CHE J W, et al. High-performance of modified Al2O3 hollow fiber membranes for CO2 absorption at room temperature[J]. Journal of Industrial and Engineering Chemistry, 2016, 42:19-22. [11] ABDULHAMEED M A, OTHMAN M H D, ISMAIL A F, et al. Carbon dioxide capture using a superhydrophobic ceramic hollow fibre membrane for gas-liquid contacting process[J]. Journal of Cleaner Production,2017, 140:1731-1738. [12] TIN P S, LIN H Y, ONG R C, et al. Carbon molecular sieve membranes for biofuel separation[J]. Carbon, 2011, 49(2):369-375. [13] RUNGTA M, WENZ G B, ZHANG C, et al. Carbon molecular sieve structure development and membrane performance relationships[J]. Carbon, 2017, 115:237-248. [14] HAIDER S, LINDBRATHEN A, LIE J A, et al. CO2 separation with carbon membranes in high pressure and elevated temperature applications[J]. Separation and Purification Technology, 2018, 190:177-189. [15] 邱天然, 况彩菱, 郑祥, 等. 全球气体膜分离技术的研究和应用趋势——基于近20年SCI论文和专利的分析[J]. 化工进展, 2016, 35(7):2299-2308. QIU T R, KUANG C L, ZHENG X, et al. On the research and application trends of global gas membrane separation technology——Based on analysis of SCI articles and patents in recent 20 years[J]. Chemical Industry and Engineering Progress, 2016, 35(7):2299-2308(in Chinese).
[16] SULEMAN M S, LAU K K, YEONG Y F. Plasticization and swelling in polymeric membranes in CO2 removal from natural gas[J]. Chemical Engineering & Technology, 2016, 39(9):1604-1616. [17] CHUAH C Y, GOH K, YANG Y Q, et al. Harnessing filler materials for enhancing biogas separation membranes[J]. Chemical Reviews, 2018, 118(18):8655-8769. [18] 孙亚伟, 谢美连, 刘庆岭, 等. 膜法分离燃煤电厂烟气中CO2的研究现状及进展[J]. 化工进展, 2017, 36(5):1880-1889. SHUN Y W, XIE M L, LIU Q L, et al. Membrane-based carbon dioxide separation from flue gases of coal-fired power plant-current status and developments[J]. Chemical Industry and Engineering Progress, 2017, 36(5):1880-1889(in Chinese).
[19] JIN P R, HUANG C, LI Y F, et al. Fabrication of a superhydrophobic poly(vinylidene fluoride) hollow fibre membrane by spray deposition[J]. Micro & Nano Letters, 2018, 13(2):223-227. [20] LI Y F, WANG L A, HU X Y, et al. Surface modification to produce superhydrophobic hollow fiber membrane contactor to avoid membrane wetting for biogas purification under pressurized conditions[J]. Separation and Purification Technology, 2018, 194:222-230. [21] ZULHAIRUN A K, SUBRAMANIAM M N, ALIREZA S. High-flux polysulfone mixed matrix hollow fiber membrane incorporating mesoporous titania nanotubes for gas separation[J]. Separation & Purification Technology, 2017, 180:13-22. [22] 郭瑞乾, 张萌, 罗居杰. 酸化多壁碳纳米管/含氟聚砜复合膜的制备及其对CO2/CH4分离性能研究[J]. 化工新型材料, 2017, 45(1):79-82. GUO R Q, ZHANG M, LUO J J. Fabrication of AT-MWCNT/polysulfone containing fluorine composite membrane for CO2/CH4 separation.[J]. New Chemical Materials, 2017, 45(1):79-82(in Chinese).
[23] 吕建飞. 聚醚醚酮改性膜的制备即CO2分离性能研究[D]. 石河子:石河子大学, 2015. LV J F. Preparation of modified polyether ether ketone and application for CO2 capture[D]. Shihezi:Shihezi University, 2015(in Chinese). [24] 刘继阳. 聚酰亚胺和共价有机骨架混合基质膜的制备及其对CO2/CH4气体渗透和选择性能的研究[D]. 太原:太原理工大学, 2018. LIU J Y. Fabrication of polyimide and covalent organic frameworks mixed matrix membranes for research of CO2/CH4 gas permeability and selectivity[D]. Taiyuan:Taiyuan University of Technology, 2018 (in Chinese).
[25] 王亚丹, 肖强, 钟依均, 等. 密胺苯二醛多孔聚合物/聚二甲基硅氧烷混合基质膜的制备及气体分离性能[J]. 物理化学学报, 2017, 33(10):2058-2063. WANG Y D, XIAO Q, ZHONG Y J, et al. Preparation and gas separation properties of melamine-phthalaldehyde porous polymer/polydimethylsiloxane mixed matrix membrane[J]. Acta Physico-Chimica Sinica, 2017, 33(10):2058-2063(in Chinese).
[26] 刘相宝. 聚醚砜中空纤维气体分离膜的制备与涂覆工艺的研究[D]. 北京:北京化工大学, 2018. LIU X B. Study on Preparation and coating technics of polyethersulfone gas separation hollow fiber membrane[D]. Beijing:Beijing University of Chemical Technology, 2018(in Chinese). [27] 徐叔军, 梁丽芸, 李步怡, 等. 有机微孔聚合物研究进展[J]. 化学进展, 2011, 23(10):2085-2094. XU S J, LIANG L Y, LI B Y, et al. Research progress on microporous organic polymers[J]. Progress In Chemistry, 2011, 23(10):2085-2094(in Chinese).
[28] DO Y S, LEE W H, SEONG J G, et al. Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes[J]. Chemical Communications, 2016, 52(93):13556-13559. [29] LEE J, KIM J S, KIM J F, et al. Densification-induced hollow fiber membranes using crosslinked thermally rearranged (XTR) polymer for CO2 capture[J]. Journal of Membrane Science, 2019, 573:393-402. [30] YONG W F, LI F Y, XIAO Y C, et al. High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation[J]. Journal of Membrane Science, 2013, 443:156-169. [31] SEKIZKARDES A K, HAMMACHE S, HOFFMAN J S, et al. Polymers of intrinsic microporosity chemical sorbents utilizing primary amine appendance through acid-base and hydrogen-bonding interactions[J]. Acs Applied Materials & Interfaces, 2019, 11(34):30987-30991. [32] BEZZU C G, CARTA M, TONKINS A, et al. A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation[J]. Advanced Materials, 2012, 24(44):5930-5933. [33] SWAIDAN R, GHANEM B S, LITWILLER E, et al. Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1[J]. Journal of Membrane Science, 2014, 457:95-102. [34] LASSEUGUETTE E, CARTA M, BRANDANI S, et al. Effect of humidity and flue gas impurities on CO2 permeation of a polymer of intrinsic microporosity for post-combustion capture[J]. International Journal of Greenhouse Gas Control, 2016, 50:90-99. [35] BUDD P M, ELABAS E S, GHANEM B S, et al. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity[J]. Advanced Materials, 2004, 16(5):456-459. [36] DAWSON R, COOPER A I, ADAMS D J. Nanoporous organic polymer networks[J]. Progress in Polymer Science, 2012, 37(4):530-563. [37] ALGHUNAIMI F, GHANEM B, WANG Y, et al. Synthesis and gas permeation properties of a novel thermally-rearranged polybenzoxazole made from an intrinsically microporous hydroxyl-functionalized triptycene-based polyimide precursor[J]. Polymer, 2017.121:9-16. [38] 江雪薇, 董杰, 赵昕, 等. 基于热重排反应聚酰亚胺气体分离膜的制备及性能研究[J]. 功能材料, 2018, 49(4):4024-4031. JIANG X W, DONG J, ZHAO X, et al. Preparation and investigation of thermally rearranged (TR) polyimide gas separation membranes[J]. Journal of Functional Materials, 2018, 49(4):4024-4031(in Chinese).
[39] PARK H B, JUNG C H, LEE Y M, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions[J]. Science, 2007, 318(5848):254-258. [40] WOO K T, LEE J, DONG G, et al. Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with superior CO2/N2 separation performance[J]. Journal of Membrane Science, 2015, 490:129-138. [41] LEE S, BINNS M, LEE J H, et al. Membrane separation process for CO2 capture from mixed gases using TR and XTR hollow fiber membranes:Process modeling and experiments[J]. Journal of Membrane Science, 2017, 541:224-234. [42] DU N Y, PARK H B, ROBERTSON G P, et al. Polymer nanosieve membranes for CO2-capture applications[J]. Nature Materials, 2011, 10(5):372-375. [43] MCKEOWN N B, BUDD P M, MSAYIB K J, et al. Polymers of intrinsic microporosity (PIMs):Bridging the void between microporous and polymeric materials[J]. Chemistry-a European Journal, 2005, 11(9):2610-2620. [44] PRASETYA N, HIMMA N F, SUTRISNA P D, et al. A Review on emerging organic-containing microporous material membranes for carbon capture and separation[J]. Chemical Engineering Journal, 2020, 391, 123575. [45] LUIS P, VAN DER BRUGGEN B, VAN GERVEN T, et al. Non-dispersive absorption for CO2 capture:From the laboratory to industry[J]. Journal of Chemical Technology and Biotechnology 2011, 86(6):769-775. [46] 李皓, 杜乃旭, 杨凯, 等. Cu-BTC/乙基纤维素混合基质膜的快速制备及气体分离性能[J]. 化工进展, 2016, 35(12):3970-3975. LI H, DU N X, YANG K, et al. Facile fabrication and gas separation properties of Cu-BTC/ethyl cellulose mixed matrix membranes[J]. Chemical Industry and Engineering Progress, 2016, 35(12):3970-3975(in Chinese).
[47] CHANG H, WANG Y, XIANG L, et al. Improved H2/CO2 separation performance on mixed-linker ZIF-7 polycrystalline membranes[J]. Chemical Engineering Science, 2018, 192:85-93. [48] AHMAD N N R, MUKHTAR H, MOHSHIM D F, et al. Effect of different organic amino cations on SAPO-34 for PES/SAPO-34 mixed matrix membranes toward CO2/CH4 separation[J]. Journal of Applied Polymer Science, 2016, 133(18), doi.org/10.1002/app.43387. [49] JUNADIDI M U M, LEO C P, AHMAD A L, et al. Fluorocarbon functionalized SAPO-34 zeolite incorporated in asymmetric mixed matrix membranes for carbon dioxide separation in wet gases[J]. Microporous and Mesoporous Materials, 2015, 206:23-33. [50] LAGHAEI M, SADEGHI M, GHALEI B, et al. The role of compatibility between polymeric matrix and silane coupling agents on the performance of mixed matrix membranes[J]. Journal of Membrane Science, 2016, 513:20-32. [51] XIN Q P, ZHANG Y SHI Y, et al. Tuning the performance of CO2 separation membranes by incorporating multifunctional modified silica microspheres into polymer matrix[J]. Journal of Membrane Science, 2016, 514:73-85. [52] XIN Q P, OUYANG J Y, LIU T Y, et al. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethyleniminedecorated metal-organic frameworks[J]. Acs Applied Materials & Interfaces, 2015, 7(2):1065-1077. [53] RODENAS T, VAN DALEN M, SERRA-CRESPO P, et al. Mixed matrix membranes based on NH2-functionalized MIL-type MOFs:Influence of structural and operational parameters on the CO2/CH4 separation performance[J]. Microporous and Mesoporous Materials, 2014, 192:35-42. [54] NORDIN N A H M, RACHA S M, MATSUURA T, et al. Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation:synthesis and preparation[J]. Rsc Advances, 2015, 5(54):43110-43120. [55] HU L Q, LIU J Y, ZHU L X, et al. Highly permeable mixed matrix materials comprising ZIF-8 nanoparticles in rubbery amorphous poly(ethylene oxide) for CO2 capture[J]. Separation and Purification Technology, 2018, 205:58-65. [56] EBRAHIMI S, MOLLAIY-BERNETI S, ASADI H, et al PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation:Experimental and modeling[J]. Chemical Engineering Research & Design, 2016, 109:647-656. [57] ZAHRI K, WONG K C, GOH P S, et al. Graphene oxide/polysulfone hollow fiber mixed matrix membranes for gas separation[J]. Rsc Advances, 2016, 6(92):89130-89139. [58] SEYED F, DEHAGHANI A H S, PIROUZFAR V, et al. The morphology and gas-separation performance of membranes comprising multiwalled carbon nanotubes/polysulfone-Kapton[J]. Journal of Applied Polymer Science, 2016.133(34),doi.org/10.1002/app.43839. [59] GIEL V, PERCHACZ M, KREDATUSOVA J, et al. Gas Transport properties of polybenzimidazole and poly (phenylene oxide) mixed matrix membranes incorporated with PDA-functionalised titanate nanotubes[J]. Nanoscale Research Letters, 2017, 12:3. [60] NASIR R, MUKHTAR H, MAN Z, et al. Mixed matrix membrane performance enhancement using alkanolamine solution[J]. Journal of Membrane Science, 2015, 483:84-93. [61] TANH JEAZET H B, STAUDT C, JANIAK C. Metal-organic frameworks in mixed-matrix membranes for gas separation[J]. Dalton Transactions, 2012, 41(46):14003. [62] SARFRAZ M, BA-SHAMMAKH M. Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas[J]. Journal of Membrane Science, 2016, 514:35-43. [63] 王树清, 乔志华, 王志. 分离CO2固定载体膜工业化制备技术[J]. 膜科学与技术, 2016, 36(5):87-94. WANG S Q, QIAO Z H, WANG Z. Industrialization preparation technology of fixed carrier membranes for CO2 separation[J]. Membrane Science And Technology, 2016, 36(5):87-94(in Chinese).
[64] TONG Z, HO W S W. Facilitated transport membranes for CO2 separation and capture[J]. Separation Science and Technology, 2017, 52(2):156-167. [65] HE X Z, FU C, HAGG M B. Membrane system design and process feasibility analysis for CO2 capture from flue gas with a fixed-site-carrier membrane[J]. Chemical Engineering Journal, 2015, 268:1-9. [66] HE X Z, LINDBRATHEN A, KIM T J, et al. Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas[J]. International Journal of Greenhouse Gas Control, 2017, 64:323-332. [67] HAN Y, WU D Z, HO W S W, et al. Nanotube-reinforced facilitated transport membrane for CO2/N2 separation with vacuum operation[J]. Journal of Membrane Science, 2018, 567:261-271. [68] ZHANG H Y, WANG R, LIANG D T, et al. Theoretical and experimental studies of membrane wetting in the membrane gas-liquid contacting process for CO2 absorption[J]. Journal of Membrane Science, 2008, 308(1/2):162-170. [69] WANG Z, FANG M X, PAN Y L, et al. Amine-based absorbents selection for CO2 membrane vacuum regeneration technology by combined absorption-desorption analysis[J]. Chemical Engineering Science, 2013, 93:238-249. [70] WANG R, LI D F, ZHOU C, et al. Impact of DEA solutions with and without CO2 loading on porous polypropylene membranes intended for use as contactors[J]. Journal of Membrane Science, 2004, 229(1/2):147-157. [71] LV Y X, YU X H, TU S T, et al. Wetting of polypropylene hollow fiber membrane contactors[J]. Journal of Membrane Science, 2010, 362(1-2):444-452. [72] MANSOURIZADEH A, ISMAIL A F. Preparation and characterization of porous PVDF hollow fiber membranes for CO2 absorption:Effect of different non-solvent additives in the polymer dope[J]. International Journal of Greenhouse Gas Control, 2011, 5(4):640-648. [73] JIN P R, HUANG C, SHEN Y D, et al. Simultaneous separation of H2S and CO2 from biogas by gas liquid membrane contactor using single and mixed absorbents[J]. Energy & Fuels, 2017, 31(10):11117-11126. [74] 李一夫. 基于PTFE中空纤维膜的气-液膜吸收CO2传质特性及性能提升研究[D]. 重庆:重庆大学,2017. LI Y F. Study of CO2 absorption characteristics using gas-liquid membrane absorption technology and its performance enhancement[D]. Chongqing:Chongqing University, 2018(in Chinese). [75] 穆艾伟, 樊俊杰, 江砚池, 等. 混合胺复配溶液对二氧化碳的吸收/解吸[J]. 环境化学, 2020, 39(2):409-415. MU A W, FAN J J, JIANG Y C, et al. CO2absorption/desorption using aqueous solution blended with mixed amine[J]. Environmental Chemistry, 2020, 39(2):409-415(in Chinese).
[76] 晏水平, 陈竞翱, 艾平, 等. 利用膜吸收技术分离沼气中CO2[J]. 农业工程学报, 2012, 28(11):196-204. YAN S P, CHEN J A, AI P, et al. CO2 removal from biogas by using membrane absorption technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(11):196-204(in Chinese).
[77] 贺清尧, 蔡凯, 晏水平, 等. 有机胺基氨基酸盐混合吸收剂对沼气中CO2的分离特性[J]. 化工进展, 2015, 34(3):857-862 ,878. HE Q Y, CAI K, YAN S P, et al. Performance of CO2 removal from biogas by using amine-based amino acid salts blended absorbents[J]. Chemical Industry and Engineering Progress, 2015, 34(3):857-862,878(in Chinese).
[78] MEHDIPOUR M, KARAMI M R, KESHAVARZ P, et al. Analysis of CO2 separation with aqueous potassium carbonate solution in a hollow fiber membrane contactor[J]. Energy & Fuels, 2013, 27(4):2185-2193. [79] DAI Z, DENG L. Membrane absorption using ionic liquid for pre-combustion CO2 capture at elevated pressure and temperature[J]. International Journal of Greenhouse Gas Control, 2016,54:59-69. [80] SHEN Y D, HUANG, C, JIN P R, et al. CO2 capture by 1-butyl methylimidazolium tetrafluoroborate-promote potassium carbonate solution in hollow fiber membrane contactors[J]. Fresenius Environmental Bulletin, 2020, 29(7):5164-5171. [81] COZMA P, WUKOVITS W, MAMALIGA I, et al. Modeling and simulation of high pressure water scrubbing technology applied for biogas upgrading[J]. Clean Technologies and Environmental Policy, 2015, 17(2):373-391. [82] GAO H X, LIU S, GAO G, et al. Hybrid behavior and mass transfer performance for absorption of CO2 into aqueous DEEA/PZ solutions in a hollow fiber membrane contactor[J]. Separation and Purification Technology, 2018, 201:291-300. [83] LI Y F, WANG L, JIN P R, et al. Removal of carbon dioxide from pressurized landfill gas by physical absorbents using a hollow fiber membrane contactor[J]. Chemical Engineering and Processing-Process Intensification, 2017, 121:149-161. [84] ZHANG Z E, YAN Y F, ZHANG L, et al. Theoretical study on CO2 absorption from biogas by membrane contactors:Effect of operating parameters[J]. Industrial & Engineering Chemistry Research, 2014, 53(36):14075-14083. [85] 张卫风, 李娟, 王秋华, 等. 燃煤烟气中CO2膜吸收分离技术的膜浸润特性述评[J]. 化工进展, 2019, 38(8):3866-3873. ZHANG W F, LI J, WANG Q H, et al. Review on membrane wettability of membrane CO2 absorption method from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2019, 38(8):3866-3873(in Chinese).
[86] SHIRAZIAN S, MOGHADASSI A, MORADI S, et al. Numerical simulation of mass transfer in gas-liquid hollow fiber membrane contactors for laminar flow conditions[J]. Simulation Modelling Practice and Theory, 2009, 17(4):708-718. [87] WU X N, WANG L, ZHANG Z H, et al. Experimental studies on CO2 absorption in immersed hollow fiber membrane contactor[J]. Applied Mechanics and Materials, 2012, 209/211:1571-1575. [88] 岳琳, 曹利, 黄学敏. 膜吸收法分离燃煤烟气中CO2的实验研究[J]. 环境污染与防治, 2017, 39(8):905-910. YUE L, CAO L, HUANG X M. Membrane absorption for CO2 separation from the coal-fired flue gas[J]. Environmental Pollution & Control, 2017, 39(8):905-910(in Chinese).
[89] ZHANG Z. Comparisons of various absorbent effects on carbon dioxide capture in membrane gas absorption (MGA) process[J]. Journal of Natural Gas Science and Engineering, 2016, 31:589-595. [90] 闫云飞, 张智恩, 晏水平, 等. 中空纤维膜结构对脱除烟气中CO2影响的数值研究[J]. 高校化学工程学报, 2015, 29(2):452-457. YAN Y F, ZHANG Z E, YAN S P, et al. Simulation on the structure effects of hollow fiber membrane on CO2 removal from flue gas[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(2):452-457(in Chinese).
[91] ESLAMI S, MOUSAVI S M, DANESH S, et al. Modeling and simulation of CO2 removal from power plant flue gas by PG solution in a hollow fiber membrane contactor[J]. Advances in Engineering Software, 2011, 42(8):612-620. [92] REZAKAZEMI M, NIAZI Z, MIRFENDERESKI M, et al. CFD simulation of natural gas sweetening in a gas-liquid hollow-fiber membrane contactor[J]. Chemical Engineering Journal, 2011, 168(3):1217-1226. -

计量
- 文章访问数: 2383
- HTML全文浏览数: 2383
- PDF下载数: 98
- 施引文献: 0