Cl-、NH4+、CO32-离子和天然有机物对掺硼金刚石电极电解制备过硫酸盐的影响
The effect of Cl-,NH4+,CO32- ions and natural organic matter on persulfate preparation by boron-doped diamond electrode electrolysis
-
摘要: 文章考察了水中几种常见的离子Cl-、NH4+、CO32-和天然有机物(NOM)对掺硼金刚石(BDD)阳极电解硫酸钠生成过硫酸盐(S2O82-)的影响,以及硫酸钠作为阳极背景电解液时,不同添加物可能在电解氧化过程中的变化.结果表明,Cl-对过硫酸盐的生成在电解的前10 min内有抑制作用,但之后过硫酸盐的合成速率更快;在硫酸钠背景电解质中,次氯酸/次氯酸盐和氯酸盐的生成量明显增加,与之相比,高氯酸盐的增加量并不明显.硫酸钠阳极液中添加NH4+可以抑制析氧副反应,使过硫酸盐的生成浓度增加;电解中NH4+的浓度下降了17.6%,可能是被氧化成N2逸出.CO32-对过硫酸盐生成的影响并不明显.NOM的存在可以减少过硫酸盐的合成量;NOM在硫酸盐阳极液中的降解与直接电解均符合一级反应动力学,硫酸盐的存在增加了NOM降解的表观反应速率.
-
关键词:
- 掺硼金刚石(BDD) /
- 过硫酸盐 /
- 电化学合成 /
- 离子 /
- 天然有机物(NOM)
Abstract: The effect of several common ions, including Cl-,NH4+ and CO32-, and natural organic matter (NOM) in water on the process in which boron-doped diamond (BDD) anode electrolyzed sodium sulfate to produce persulfate (S2O82-) was experimentally elucidated. And the possible reactions of different coexisting substance in the electrochemical oxidation process were also investigated, when sodium sulfate was used as the background electrolyte of anode. The results showed that Cl- inhibited the generation of persulfate in the first 10 min of electrolysis, but later accelerated the synthetic rate of persulfate. In sodium sulfate electrolyte, the production of hypochloric acid/hypochlorite and chlorate increased significantly, while the production of perchlorate did not increase evidently. The oxygen evolution reaction was inhibited by adding NH4+ to sodium sulfate anolyte, resulting in the increased concentration of persulfate. During the electrolysis, it was found that the concentration of NH4+ decreased by 17.6%, which might be oxidized to N2 and escaped from the solution. CO32- did not present any significant inhibiting or promoting effect on the production of persulfate. The presence of NOM reduced the synthesis of persulfate. In addition, sulfate increased the apparent reaction rate of the degradation of NOM. As with direct electrolysis, the degradation of NOM in sulfate anolyte complied with the kinetics of first-order reaction.-
Key words:
- boron-doped diamond(BDD) /
- persulfate /
- electrochemical synthesis /
- ions /
- natural organic matter (NOM)
-
-
[1] ZHU J, HⅡ K K, HELLGARDT K. Toward a green generation of oxidant on demand:Practical electrosynthesis of ammonium persulfate[J]. Acs Sustainable Chemistry & Engineering, 2016, 4(4):2027-2036. [2] DAVIS J, BAYGENTS J C, FARRELL J. Understanding persulfate production at boron doped diamond film anodes[J]. Electrochimica Acta, 2014, 150:68-74. [3] DAVIS J R, BAYGENTS J C, FARRELL J. Effect of current density and sulfuric acid concentration on persulfuric acid generation by boron-doped diamond film anodes[J]. Journal of Applied Electrochemistry, 2014, 44(7):841-848. [4] KHAMIS D, MAHE E, DARDOIZE F, et al. Peroxodisulfate generation on boron-doped diamond microelectrodes array and detection by scanning electrochemical microscopy[J]. Journal of Applied Electrochemistry, 2010, 40(10):1829-1838. [5] SERRANO K, MICHAUD P A, COMNINELLIS C, et al. Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes[J]. Electrochimica Acta, 2002, 48(4):431-436. [6] RADJENOVIC J, PETROVIC M. Removal of sulfamethoxazole by electrochemically activated sulfate:Implications of chloride addition[J]. Journal of Hazardous Materials, 2017, 333:242-249. [7] YANG S Q, CUI Y H, LIU Y Y, et al. Electrochemical generation of persulfate and its performance on 4-bromophenol treatment[J]. Separation and Purification Technology, 2018, 207:461-469. [8] VAN GELUWE S, BRAEKEN L, VAN DER BRUGGEN B. Ozone oxidation for the alleviation of membrane fouling by natural organic matter:A review[J]. Water Research, 2011, 45(12):3551-3570. [9] 王亚军, 马军. 水体环境中天然有机质腐殖酸研究进展[J]. 生态环境学报, 2012, 21(6):1155-1165. WANG Y J, MA J. Research advances of humic acid in aquatic environments[J]. Ecology and Environmental Sciences, 2012, 21(6):1155-1165(in Chinese).
[10] BERGMANN M E H, ROLLIN J. Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes[J]. Catalysis Today, 2007, 124(3/4):198-203. [11] ZHOU L, YAN C, SLEIMAN M, et al. Sulfate radical induced degradation of β2-adrenoceptor agonists salbutamol and Terbutaline:Implication of halides, bicarbonate, and natural organic matter[J]. Chemical Engineering Journal, 2019, 368:252-260. [12] GUO Y, MA Q, CAO F, et al. Colorimetric detection of hypochlorite in tap water based on the oxidation of 3,3',5,5'-tetramethylbenzidine[J]. Analytical Methods, 2015, 7(10):4055-4058. [13] LIANG C, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9):1540-1543. [14] ZHOU M, LI C, LUO H, et al. Electrooxidation of sulfate paired to electroreduction of copper for regeneration of persulfate/sulfuric acid etching solution[J]. Green Chemistry, 2018, 20(20):4710-4718. [15] IRKHAM, WATANABE T, FIORANI A, et al. Co-reactant-on-demand ECL:Electrogenerated chemiluminescence by the in situ production of S2O82- at boron-doped diamond electrodes[J]. Journal of the American Chemical Society, 2016, 138(48):15636-15641. [16] AZIZI O, HUBLER D, SCHRADER G, et al. Mechanism of perchlorate formation on boron-doped diamond film anodes[J]. Environmental Science & Technology, 2011, 45(24):10582-10590. [17] STANKOVIC D M, KUZMANOVIC D, MANOJLOVIC D, et al. Electroanalytical approach for vitamin B-12 quantification based on its oxidation at boron doped diamond electrode[J]. Journal of the Electrochemical Society, 2016, 163(7):B348-B351. [18] SCHRANCK A, DOUDRICK K. Effect of reactor configuration on the kinetics and nitrogen byproduct selectivity of urea electrolysis using a boron doped diamond electrode[J]. Water Research, 2020, 168:115130. [19] FARHAT A, KELLER J, TAIT S, et al. Assessment of the impact of chloride on the formation of chlorinated by-products in the presence and absence of electrochemically activated sulfate[J]. Chemical Engineering Journal, 2017, 330:1265-1271. [20] MOSTAFA E, REINSBERG P, GARCIA-SEGURA S, et al. Chlorine species evolution during electrochlorination on boron-doped diamond anodes:In-situ electrogeneration of Cl-, Cl2O and ClO2[J]. Electrochimica Acta, 2018, 281:831-840. [21] LUTZE H V, KERLIN N, SCHMIDT T C. Sulfate radical-based water treatment in presence of chloride:Formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate[J]. Water Research, 2015, 72:349-360. [22] WU Y, BIANCO A, BRIGANTE M, et al. Sulfate radical photogeneration using Fe-EDDS:Influence of critical parameters and naturally occurring scavengers[J]. Environmental Science & Technology, 2015, 49(24):14343-14349. [23] BERGMANN M E H, ROLLIN J, IOURTCHOUK T. The occurrence of perchlorate during drinking water electrolysis using BDD anodes[J]. Electrochimica Acta, 2009, 54(7):2102-2107. [24] PARK H, VECITIS C D, HOFFMANN M R. Electrochemical water splitting coupled with organic compound oxidation:The role of active chlorine species[J]. Journal of Physical Chemistry C, 2009, 113(18):7935-7945. [25] 刘锡钧. 过硫酸盐生产方法的探讨[J]. 无机盐工业, 1984(3):13-17. LIU X J. Discussion on the production method of persulfate[J]. Inorganic Salt Industry, 1984 (3):13-17(in Chinese).
[26] 罗海健. 双电极同步产生·OH/SO4·- 降解苯酚体系的构建及机制研究[D]. 哈尔滨:哈尔滨工业大学, 2018. LUO H J. Oxidation system of simultaneous generation of·OH/SO4· ;-
on a paired electrode for phenol degradation and its mechanism study[D]. Harbin:Harbin Institute of Technology,2018(in Chinese).[27] TSUNO M, SUZUKI H, KONDO T, et al. Interaction and inhibitory effect of ammonium cation in the oxygen evolving center of photosytem Ⅱ[J]. Biochemistry, 2011, 50(13):2506-2514. [28] LOVYAGINA E R, SEMIN B K. Mechanism of inhibition and decoupling of oxygen evolution from electron transfer in photosystem Ⅱ by fluoride, ammonia and acetate[J]. Journal of Photochemistry and Photobiology B:Biology, 2016, 158:145-153. [29] KAPALKA A, JOSS L, ANGLADA Á, et al. Direct and mediated electrochemical oxidation of ammonia on boron-doped diamond electrode[J]. Electrochemistry Communications, 2010, 12(12):1714-1717. [30] SONG H, YAN L, MA J, et al. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode:Efficiency, mechanism and influencing factors[J]. Water Research, 2017, 116:182-193. [31] YANG Y, LU X, JIANG J, et al. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS):Formation of oxidation products and effect of bicarbonate[J]. Water Research, 2017, 118:196-207. [32] CHARDON C P, MATTHEE T, NEUBER R, et al. Efficient electrochemical production of peroxodicarbonate applying DIACHEM® diamond Electrodes[J]. Chemistry Select, 2017, 2(3):1037-1040. [33] RUBI-JUAREZ H, COTILLAS S, SAEZ C, et al. Use of conductive diamond photo-electrochemical oxidation for the removal of pesticide glyphosate[J]. Separation and Purification Technology, 2016, 167:127-135. -

计量
- 文章访问数: 2011
- HTML全文浏览数: 2011
- PDF下载数: 116
- 施引文献: 0