Cl-、NH4+、CO32-离子和天然有机物对掺硼金刚石电极电解制备过硫酸盐的影响

孙智宇, 张峰, 崔建国. Cl-、NH4+、CO32-离子和天然有机物对掺硼金刚石电极电解制备过硫酸盐的影响[J]. 环境化学, 2020, (10): 2878-2886. doi: 10.7524/j.issn.0254-6108.2020032902
引用本文: 孙智宇, 张峰, 崔建国. Cl-、NH4+、CO32-离子和天然有机物对掺硼金刚石电极电解制备过硫酸盐的影响[J]. 环境化学, 2020, (10): 2878-2886. doi: 10.7524/j.issn.0254-6108.2020032902
SUN Zhiyu, ZHANG Feng, CUI Jianguo. The effect of Cl-,NH4+,CO32- ions and natural organic matter on persulfate preparation by boron-doped diamond electrode electrolysis[J]. Environmental Chemistry, 2020, (10): 2878-2886. doi: 10.7524/j.issn.0254-6108.2020032902
Citation: SUN Zhiyu, ZHANG Feng, CUI Jianguo. The effect of Cl-,NH4+,CO32- ions and natural organic matter on persulfate preparation by boron-doped diamond electrode electrolysis[J]. Environmental Chemistry, 2020, (10): 2878-2886. doi: 10.7524/j.issn.0254-6108.2020032902

Cl-、NH4+、CO32-离子和天然有机物对掺硼金刚石电极电解制备过硫酸盐的影响

    通讯作者: 张峰, E-mail: zhangfeng@tyut.edu.cn
  • 基金项目:

    国家自然科学基金青年基金(51408397)和山西省自然科学基金(201801D121275)资助.

The effect of Cl-,NH4+,CO32- ions and natural organic matter on persulfate preparation by boron-doped diamond electrode electrolysis

    Corresponding author: ZHANG Feng, zhangfeng@tyut.edu.cn
  • Fund Project: Supported by the Youth Program of National Natural Science Foundation of China(51408397)and the Natural Science Foundation of Shanxi Province(201801D121275).
  • 摘要: 文章考察了水中几种常见的离子Cl-、NH4+、CO32-和天然有机物(NOM)对掺硼金刚石(BDD)阳极电解硫酸钠生成过硫酸盐(S2O82-)的影响,以及硫酸钠作为阳极背景电解液时,不同添加物可能在电解氧化过程中的变化.结果表明,Cl-对过硫酸盐的生成在电解的前10 min内有抑制作用,但之后过硫酸盐的合成速率更快;在硫酸钠背景电解质中,次氯酸/次氯酸盐和氯酸盐的生成量明显增加,与之相比,高氯酸盐的增加量并不明显.硫酸钠阳极液中添加NH4+可以抑制析氧副反应,使过硫酸盐的生成浓度增加;电解中NH4+的浓度下降了17.6%,可能是被氧化成N2逸出.CO32-对过硫酸盐生成的影响并不明显.NOM的存在可以减少过硫酸盐的合成量;NOM在硫酸盐阳极液中的降解与直接电解均符合一级反应动力学,硫酸盐的存在增加了NOM降解的表观反应速率.
  • 加载中
  • [1] ZHU J, HⅡ K K, HELLGARDT K. Toward a green generation of oxidant on demand:Practical electrosynthesis of ammonium persulfate[J]. Acs Sustainable Chemistry & Engineering, 2016, 4(4):2027-2036.
    [2] DAVIS J, BAYGENTS J C, FARRELL J. Understanding persulfate production at boron doped diamond film anodes[J]. Electrochimica Acta, 2014, 150:68-74.
    [3] DAVIS J R, BAYGENTS J C, FARRELL J. Effect of current density and sulfuric acid concentration on persulfuric acid generation by boron-doped diamond film anodes[J]. Journal of Applied Electrochemistry, 2014, 44(7):841-848.
    [4] KHAMIS D, MAHE E, DARDOIZE F, et al. Peroxodisulfate generation on boron-doped diamond microelectrodes array and detection by scanning electrochemical microscopy[J]. Journal of Applied Electrochemistry, 2010, 40(10):1829-1838.
    [5] SERRANO K, MICHAUD P A, COMNINELLIS C, et al. Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes[J]. Electrochimica Acta, 2002, 48(4):431-436.
    [6] RADJENOVIC J, PETROVIC M. Removal of sulfamethoxazole by electrochemically activated sulfate:Implications of chloride addition[J]. Journal of Hazardous Materials, 2017, 333:242-249.
    [7] YANG S Q, CUI Y H, LIU Y Y, et al. Electrochemical generation of persulfate and its performance on 4-bromophenol treatment[J]. Separation and Purification Technology, 2018, 207:461-469.
    [8] VAN GELUWE S, BRAEKEN L, VAN DER BRUGGEN B. Ozone oxidation for the alleviation of membrane fouling by natural organic matter:A review[J]. Water Research, 2011, 45(12):3551-3570.
    [9] 王亚军, 马军. 水体环境中天然有机质腐殖酸研究进展[J]. 生态环境学报, 2012, 21(6):1155-1165.

    WANG Y J, MA J. Research advances of humic acid in aquatic environments[J]. Ecology and Environmental Sciences, 2012, 21(6):1155-1165(in Chinese).

    [10] BERGMANN M E H, ROLLIN J. Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes[J]. Catalysis Today, 2007, 124(3/4):198-203.
    [11] ZHOU L, YAN C, SLEIMAN M, et al. Sulfate radical induced degradation of β2-adrenoceptor agonists salbutamol and Terbutaline:Implication of halides, bicarbonate, and natural organic matter[J]. Chemical Engineering Journal, 2019, 368:252-260.
    [12] GUO Y, MA Q, CAO F, et al. Colorimetric detection of hypochlorite in tap water based on the oxidation of 3,3',5,5'-tetramethylbenzidine[J]. Analytical Methods, 2015, 7(10):4055-4058.
    [13] LIANG C, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9):1540-1543.
    [14] ZHOU M, LI C, LUO H, et al. Electrooxidation of sulfate paired to electroreduction of copper for regeneration of persulfate/sulfuric acid etching solution[J]. Green Chemistry, 2018, 20(20):4710-4718.
    [15] IRKHAM, WATANABE T, FIORANI A, et al. Co-reactant-on-demand ECL:Electrogenerated chemiluminescence by the in situ production of S2O82- at boron-doped diamond electrodes[J]. Journal of the American Chemical Society, 2016, 138(48):15636-15641.
    [16] AZIZI O, HUBLER D, SCHRADER G, et al. Mechanism of perchlorate formation on boron-doped diamond film anodes[J]. Environmental Science & Technology, 2011, 45(24):10582-10590.
    [17] STANKOVIC D M, KUZMANOVIC D, MANOJLOVIC D, et al. Electroanalytical approach for vitamin B-12 quantification based on its oxidation at boron doped diamond electrode[J]. Journal of the Electrochemical Society, 2016, 163(7):B348-B351.
    [18] SCHRANCK A, DOUDRICK K. Effect of reactor configuration on the kinetics and nitrogen byproduct selectivity of urea electrolysis using a boron doped diamond electrode[J]. Water Research, 2020, 168:115130.
    [19] FARHAT A, KELLER J, TAIT S, et al. Assessment of the impact of chloride on the formation of chlorinated by-products in the presence and absence of electrochemically activated sulfate[J]. Chemical Engineering Journal, 2017, 330:1265-1271.
    [20] MOSTAFA E, REINSBERG P, GARCIA-SEGURA S, et al. Chlorine species evolution during electrochlorination on boron-doped diamond anodes:In-situ electrogeneration of Cl-, Cl2O and ClO2[J]. Electrochimica Acta, 2018, 281:831-840.
    [21] LUTZE H V, KERLIN N, SCHMIDT T C. Sulfate radical-based water treatment in presence of chloride:Formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate[J]. Water Research, 2015, 72:349-360.
    [22] WU Y, BIANCO A, BRIGANTE M, et al. Sulfate radical photogeneration using Fe-EDDS:Influence of critical parameters and naturally occurring scavengers[J]. Environmental Science & Technology, 2015, 49(24):14343-14349.
    [23] BERGMANN M E H, ROLLIN J, IOURTCHOUK T. The occurrence of perchlorate during drinking water electrolysis using BDD anodes[J]. Electrochimica Acta, 2009, 54(7):2102-2107.
    [24] PARK H, VECITIS C D, HOFFMANN M R. Electrochemical water splitting coupled with organic compound oxidation:The role of active chlorine species[J]. Journal of Physical Chemistry C, 2009, 113(18):7935-7945.
    [25] 刘锡钧. 过硫酸盐生产方法的探讨[J]. 无机盐工业, 1984(3):13-17. LIU X J. Discussion on the production method of persulfate[J]. Inorganic Salt Industry, 1984

    (3):13-17(in Chinese).

    [26] 罗海健. 双电极同步产生·OH/SO4·- 降解苯酚体系的构建及机制研究[D]. 哈尔滨:哈尔滨工业大学, 2018. LUO H J. Oxidation system of simultaneous generation of·OH/SO4·

    ;- on a paired electrode for phenol degradation and its mechanism study[D]. Harbin:Harbin Institute of Technology,2018(in Chinese).

    [27] TSUNO M, SUZUKI H, KONDO T, et al. Interaction and inhibitory effect of ammonium cation in the oxygen evolving center of photosytem Ⅱ[J]. Biochemistry, 2011, 50(13):2506-2514.
    [28] LOVYAGINA E R, SEMIN B K. Mechanism of inhibition and decoupling of oxygen evolution from electron transfer in photosystem Ⅱ by fluoride, ammonia and acetate[J]. Journal of Photochemistry and Photobiology B:Biology, 2016, 158:145-153.
    [29] KAPALKA A, JOSS L, ANGLADA Á, et al. Direct and mediated electrochemical oxidation of ammonia on boron-doped diamond electrode[J]. Electrochemistry Communications, 2010, 12(12):1714-1717.
    [30] SONG H, YAN L, MA J, et al. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode:Efficiency, mechanism and influencing factors[J]. Water Research, 2017, 116:182-193.
    [31] YANG Y, LU X, JIANG J, et al. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS):Formation of oxidation products and effect of bicarbonate[J]. Water Research, 2017, 118:196-207.
    [32] CHARDON C P, MATTHEE T, NEUBER R, et al. Efficient electrochemical production of peroxodicarbonate applying DIACHEM® diamond Electrodes[J]. Chemistry Select, 2017, 2(3):1037-1040.
    [33] RUBI-JUAREZ H, COTILLAS S, SAEZ C, et al. Use of conductive diamond photo-electrochemical oxidation for the removal of pesticide glyphosate[J]. Separation and Purification Technology, 2016, 167:127-135.
  • 加载中
计量
  • 文章访问数:  2011
  • HTML全文浏览数:  2011
  • PDF下载数:  116
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-03-29
孙智宇, 张峰, 崔建国. Cl-、NH4+、CO32-离子和天然有机物对掺硼金刚石电极电解制备过硫酸盐的影响[J]. 环境化学, 2020, (10): 2878-2886. doi: 10.7524/j.issn.0254-6108.2020032902
引用本文: 孙智宇, 张峰, 崔建国. Cl-、NH4+、CO32-离子和天然有机物对掺硼金刚石电极电解制备过硫酸盐的影响[J]. 环境化学, 2020, (10): 2878-2886. doi: 10.7524/j.issn.0254-6108.2020032902
SUN Zhiyu, ZHANG Feng, CUI Jianguo. The effect of Cl-,NH4+,CO32- ions and natural organic matter on persulfate preparation by boron-doped diamond electrode electrolysis[J]. Environmental Chemistry, 2020, (10): 2878-2886. doi: 10.7524/j.issn.0254-6108.2020032902
Citation: SUN Zhiyu, ZHANG Feng, CUI Jianguo. The effect of Cl-,NH4+,CO32- ions and natural organic matter on persulfate preparation by boron-doped diamond electrode electrolysis[J]. Environmental Chemistry, 2020, (10): 2878-2886. doi: 10.7524/j.issn.0254-6108.2020032902

Cl-、NH4+、CO32-离子和天然有机物对掺硼金刚石电极电解制备过硫酸盐的影响

    通讯作者: 张峰, E-mail: zhangfeng@tyut.edu.cn
  • 太原理工大学环境科学与工程学院, 太原, 030024
基金项目:

国家自然科学基金青年基金(51408397)和山西省自然科学基金(201801D121275)资助.

摘要: 文章考察了水中几种常见的离子Cl-、NH4+、CO32-和天然有机物(NOM)对掺硼金刚石(BDD)阳极电解硫酸钠生成过硫酸盐(S2O82-)的影响,以及硫酸钠作为阳极背景电解液时,不同添加物可能在电解氧化过程中的变化.结果表明,Cl-对过硫酸盐的生成在电解的前10 min内有抑制作用,但之后过硫酸盐的合成速率更快;在硫酸钠背景电解质中,次氯酸/次氯酸盐和氯酸盐的生成量明显增加,与之相比,高氯酸盐的增加量并不明显.硫酸钠阳极液中添加NH4+可以抑制析氧副反应,使过硫酸盐的生成浓度增加;电解中NH4+的浓度下降了17.6%,可能是被氧化成N2逸出.CO32-对过硫酸盐生成的影响并不明显.NOM的存在可以减少过硫酸盐的合成量;NOM在硫酸盐阳极液中的降解与直接电解均符合一级反应动力学,硫酸盐的存在增加了NOM降解的表观反应速率.

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回