透明胞外聚合颗粒物及其膜污染机理的研究进展

刘雅娟. 透明胞外聚合颗粒物及其膜污染机理的研究进展[J]. 环境化学, 2020, (11): 3038-3049. doi: 10.7524/j.issn.0254-6108.2020031102
引用本文: 刘雅娟. 透明胞外聚合颗粒物及其膜污染机理的研究进展[J]. 环境化学, 2020, (11): 3038-3049. doi: 10.7524/j.issn.0254-6108.2020031102
LIU Yajuan. A review of transparent exopolymer particles and their membrane fouling mechanisms[J]. Environmental Chemistry, 2020, (11): 3038-3049. doi: 10.7524/j.issn.0254-6108.2020031102
Citation: LIU Yajuan. A review of transparent exopolymer particles and their membrane fouling mechanisms[J]. Environmental Chemistry, 2020, (11): 3038-3049. doi: 10.7524/j.issn.0254-6108.2020031102

透明胞外聚合颗粒物及其膜污染机理的研究进展

    通讯作者: 刘雅娟, E-mail: dtdxliuyajuan@139.com
  • 基金项目:

    山西省回国留学人员科研资助项目(2017-108)和大同市科技计划项目(2018020)资助.

A review of transparent exopolymer particles and their membrane fouling mechanisms

    Corresponding author: LIU Yajuan, dtdxliuyajuan@139.com
  • Fund Project: Supported by Shanxi Scholarship Council of China (2017-108) and Datong City Key Research and Development Projects (2018020).
  • 摘要: 透明胞外聚合颗粒物(transparent exopolymer particles,TEP)是一类主要成分为酸性多糖的高黏性有机微凝胶,普遍存在于海水、淡水和废水中,影响碳元素、微生物和颗粒物等在水环境中的迁移循环.TEP是膜分离系统中一种重要的有机污染物,在过滤过程中附着在膜表面或黏附在膜孔内壁,显著增加膜阻力.研究显示,水环境中的藻类和细菌的种类和生长阶段等因素影响TEP的形成和含量.TEP与膜表面生物膜的形成和早期发育密切相关,是膜生物污染形成的主要成因.颗粒态TEP易在微滤、超滤和反渗透膜表面形成滤饼层,而胶体态TEP和TEP前体易阻塞膜孔或通过超微滤膜孔在反渗透膜表面形成凝胶层.电解质能促进胶体态TEP凝聚形成颗粒态TEP减轻超滤膜污染,同时也能被超滤膜截留去除.絮凝、沉淀、过滤等工艺组合可有效去除TEP,更好地控制膜污染.
  • 加载中
  • [1] LIN H, ZHANG M, WANG F, et al. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors:Characteristics, roles in membrane fouling and control strategies[J]. Journal of Membrane Science, 2014, 460(12):110-125.
    [2] WANG Z, WU Z, YIN X, et al. Membrane fouling in submerged membrane bioreactor (MBR) under subscritical flux operation:membrane foulant and gel layer characterization[J]. Journal of Membrane Science, 2008, 325(2):238-244.
    [3] GAO D, FU Y, REN N. Tracing biofouling to the structure of the microbial community and its metabolic products:A study of the three-stage MBR process[J]. Water Research, 2013, 47(17):6680-6690.
    [4] LIANG S, ZHAO Y, LIU C, et al. Effect of solution chemistry on the fouling potential of dissolved organic matter in membrane bioreactor system[J]. Journal of Membrane Science, 2008, 310(1/2):502-511.
    [5] TANG S, WANG Z, WU Z, et al. Role of dissolved organic matter (DOM) in membrane fouling of membrane bioreactores for municipal wastewater treatement[J]. Journal of Hazardous Materials, 2010, 178:377-384.
    [6] LISHMAN L, AQEEL H, BASUVARAJ M, et al. Biofouling of an aerated membrane reactor:Four distinct microbial communities[J]. Environmental Engineering Science, 2020, 37(1):3-12.
    [7] BAR-ZEEV E, BERMAN-FRANK I, LIBERMAN B, et al. Transparent exopolymer particles:Potential agents for organic fouling and biofilm formation in desalination and water treatment plants[J]. Desalination and Water Treatment, 2009, 3:136-142.
    [8] BAR-ZEEV E, BERMAN-FRANK I, STAMBLER N, et al. Transparent exopolymer particles (TEP) link phytoplankton and bacterial production in the Gulf of Aqaba[J]. Aquatic Microbial Ecology, 2009, 56(2/3):217-225.
    [9] AMY G. Fundamental understanding of organic matter fouling of membranes[J]. Desalination, 2008, 231:44-51.
    [10] LI S, WINTERS H, JEONG S, et al. Marine bacterial transparent exopolymer particles (TEP) and TEP precursors:Characterization and RO fouling potential[J]. Desalination, 2016, 379(3):68-74.
    [11] PASSOW U, SWEET J, FRANCIS S, et al. Incorporation of oil into diatom aggregates[J]. Marine Ecology Progress Series, 2019, 612(1):65-86.
    [12] PASSOW U. Transparent exopolymer particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3/4):287-333.
    [13] PASSOW U, SHIPE R F, MURRAY A, et al. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter[J]. Continental Shelf Research, 2001, 21(4):327-346.
    [14] PASSOW U. Production of transparent exopolymer particles (TEP) by phyto-and bacterioplankton[J]. Marine Ecology Progress Series, 2002, 236(11):1-12.
    [15] JENNINGS M K, PASSOW U, WOZNIAK A S, et al. Distribution of transparent exopolymer particles (TEP) across an organic carbon gradient in the western North Atlantic Ocean[J]. Marine Chemistry, 2017, 190(3):1-12.
    [16] CHIN W C, ORELLANA M V, VERDUGO P. Spontaneous assembly of marine dissoved organic matter into polymer gels[J]. Nature, 1998, 391(6667):568-572.
    [17] BAR-ZEEV E, BERMAN T, RAHAV E, et al. Teansparent expolymer particles (TEP) dynamics in the eastern Mediterranean Sea[J]. Marine Ecology Progress Series, 2011, 431(6):107-118.
    [18] HONG Y, SMITH W O, WHITE A M. Studies on transparent exopolymer particles (TEP) produced in the Ross Sea (Antarctica) and by Phaeocystis antarctica (Prymnesiophyceae)[J]. Journal of Phycology, 1997, 33(3):368-376.
    [19] MARI X, PASSOW U, MIGON C, et al. Transparent exopolymer particles:Effects on carbon cycling in the ocean[J]. Progress in Oceanography, 2017, 151(2):13-37.
    [20] AZETSU-SCOTT K, PASSOW U. Ascending marine particles:Significance of transparent exopolymer particles (TEP) in the upper ocean[J]. Limnology and Oceanography, 2004, 49(3):741-748.
    [21] ROBINSON T B, STOLLE C, WURL O. Depth is relative:The importance of depth for transparent exopolymer particles in the near-surface environment[J]. Ocean Science, 2019, 15(6):1653-1666.
    [22] BERMAN T, HOLENBERG M A. Don't fall foul of biofilm through high TEP levels[J]. Filtration & Separation, 2005, 42(4):30-32.
    [23] BERMAN T. Biofouling:TEP-a major challenge for water filtration[J]. Filtration & Separation, 2010, 47(2):20-22.
    [24] TORRE T D L, LESJEAN B, DREWS A, et al. Monitoring of transparent exopolymer particles (TEP) in a membrane bioreactor (MBR) and correlation with other fouling indicators[J]. Water Science and Technology, 2008, 58(10):1903-1909.
    [25] VILLACORTE L O, SCHURER R, KENNEDY M D, et al. Removal and deposition of transparent exopolymer particles in a seawater UF-RO system[J]. IDA Journal of Desalination and Water Reuse, 2010, 2(1):45-55.
    [26] KENNEDY M D, TOBAR F P M, AMY G, et al. Transparent exopolymer particle (TEP) fouling of ultrafiltration membrane systems[J]. Desalination and Water Treatment, 2009, 6:169-176.
    [27] BERMAN T, VINER-MOZZINI Y. Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret[J]. Aquatic Microbial Ecology, 2001, 24(3):255-264.
    [28] PASSOW U, ALLDREDGE A L. Aggregation of a diatom bloom in a mesocosm:The role of transparent exopolymer particles (TEP)[J]. Deep-Sea Research Part Ⅱ:Tropical Studies in Oceanography, 1995, 42(1):99-109.
    [29] 马丽丽, 陈敏, 郭劳动, 等. 北白令海透明胞外聚合颗粒物的含量与来源[J]. 海洋学报(中文版), 2012, 34(5):81-90. MA L, CHEN M, GUO L, et al. Distribution and source of tranapartent exopolymer particles in the northern Bering Sea[J]. Acta Oceanologica Sinica, 2012, 34(5):81-90(in Chinese).
    [30] THORNTON D C O. Formation of transparent exopolymeric particles (TEP) from macroalgal detritus[J]. Marine Ecology Progress Series, 2004, 282(17):1-12.
    [31] NEVEL S V, HENNEBEL T, BEUF K D, et al. Transparent exopolymer particle removal in different drinking water production centers[J]. Water Research, 2012, 46(11):3603-3611.
    [32] BAR-ZEEV E, BERMAN-FRANK I, GIRSHEVITZ O, et al. Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(23):9119-9124.
    [33] BERMAN T, PASSOW U. Transparent exopolymer particles (TEP):An overlooked factor in the process of biofilm formation in aquatic environments[J]. Nature Precedings, 2007, DOI:10.1038/npre.2007.1182.1
    [34] SANTSCHI P H, BALNOIS E, WILKINSON K J, et al. Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy[J]. Limnology and Oceanography, 1998, 43(5):896-908.
    [35] LI S, WINTERS H, VILLACORTE L O, et al. Compositional similarities and differences between transparent exopolymer particles (TEPs) from two marine bacteria and two marine algae:Significience to surface biofouling[J]. Marine Chemistry, 2015, 174(7):131-140.
    [36] PASSOW U, ALLDREDGE A L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP)[J]. Limnology and Oceanography, 1995, 40(7):1326-1335.
    [37] ALLDREDGE A L, PASSOW U, LOGAN B E. The abundance and significance of a class of large, transparent organic particles in the ocean[J]. Deep Sea Research Part I:Oceanographic Resarch Papers, 1993, 40(6):1131-1140.
    [38] XU C, CHIN W C, LIN P, et al. Comparison of microgels, extracellular polymeric substances (EPS) and transparent exopolymeric particles (TEP) determined in seawater with and without oil[J]. Marine Chemistry, 2019, 215(8):103667.
    [39] 刘丽贞, 黄琪, 秦伯强, 等. 透明胞外聚合颗粒物在水处理中的应用研究进展[J]. 水处理技术, 2015, 41(12):15-19.

    LIU L, HUANG Q, QIN B, et al. Advances in the application of transparent exopolymer particle (TEP) in water treatment[J]. Technology of Water Treatment, 2015, 41(12):15-19(in Chinese).

    [40] BERMAN T. Transparent exopolymer particles as critical agents in aquatic biofilm formation:implications for desalination and water treatment[J]. Desalination and Water Treatment, 2013, 51:1014-1020.
    [41] STODEREGGER K E, HERNDL G J. Production of exopolymer particles by marine bacterioplankton under contrasting turbulence conditions[J]. Marine Ecology Progress Series, 1999, 189(14):9-16.
    [42] RADIĆ T, KRAUS R, FUKS D, et al. Transparent exopolymeric particles' distribution in the northern Adriatic and their relation to microphytoplankton biomass and composition[J]. Science of the Total Environment, 2005, 353(1):151-161.
    [43] PRAIRIE J C, MONTGOMERY Q W, PROCTOR K W, et al. Effects of phytoplankton growth phase on settling properties of marine aggregates[J]. Journal of Marine Science and Engineering, 2019, 7(8):265.
    [44] 郭康丽, 陈洁, 王小冬, 等. 两种海洋硅藻透明胞外聚合颗粒物的产生及其生态学意义[J]. 海洋环境科学, 2019, 38(5):649-655.

    GUO K L, CHEN J, WANG X D, et al. Production of transparent exopolymer particles from two marine diatoms and its ecological significance[J]. Chinese Journal of Marine Environmental Science, 2019, 38(5):649-655(in Chinese).

    [45] FUKAO T, KIMOTO K, KOTANI Y. Produciton of transparent exopolymer particles by four diatom species[J]. Fisheries Science, 2010, 76(5):755-760.
    [46] 孙翠慈, 王友绍, 吴梅林, 等. 夏季珠江口透明胞外聚合颗粒物分布特征[J]. 热带海洋学报, 2010, 29(5):81-87.

    SUN C C, WANG Y S, WU M L, et al. Distribution of transparent exopolymer particles in the pearl River Estuary in summer[J]. Journal of Tropical Oceanography, 2010, 29(5):81-87(in Chinese).

    [47] GUERRINI F, MAZZOTTI A, BONI L, et al. Bacterial-algal interactions in polysaccharide production[J]. Aquatic Microbial Ecology, 1998, 15(3):247-253.
    [48] BERMAN-FRANK I, ROSENBERG G, LEVITAN O, et al. Coupling between autocatalytic cell death and transparent exopolymeric particle production in the marine cyanobacterium Trichodesmium[J]. Environmental Microbiology, 2007, 9(6):1415-1422.
    [49] ENGEL A, PASSOW U. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their alcian blue adsorption[J]. Marine Ecology Progress Series, 2001, 219(11):1-10.
    [50] PASSOW U. Formation of transparent exoplymer particles TEP, from dissoloved precursor material[J]. Marine Ecology Progress Series, 2000, 192(1):1-11.
    [51] CHANDRASEKARAN R, RADHA A. Molecular modeling of xanthan:Galactomannan interactions[J]. Carbohydrate Polymer, 1997, 32(3):201-208.
    [52] MENG S, WINTERS H, LIU Y. Ultrafiltration behaviors of alginate blocks at various calcium concentration[J]. Water Research, 2015, 83(16):248-257.
    [53] WANG R, LIANG D, LIU X, et al. Effect of magnesium ion on polysaccharide fouling[J]. Chemical Engineering Journal, 2020, 379(1):122351.
    [54] VILLACORTE L O, KENNEDY M D, AMY G L, et al. The fate of transparent exopolymer particles (TEP) in integrated membrane systems:Removal through pre-treatment processes and deposition on reverse osmosis membranes[J]. Water Research, 2009, 43(20):5039-5053.
    [55] VILLACORTE L O, SCHURER R, KENNEDY M D, et al. The fate of transparent exopolymer particles (TEP) in seawater UF-RO system:A pilot plant study in Zeeland, The Netherlands[J]. Desalination and Water Treatment, 2010, 13:109-119.
    [56] LI X, SKILLMAN L, LI D, et al. Comparison of alcian blue and total carbohydrate assays for quantitation of transparent exopolymer particles (TEP) in biofouling studies[J]. Water Research, 2018, 133(6):60-68.
    [57] MENG S, RZECHOWICZ M, WINTERS H, et al. Transparent exopolymer particles (TEP) and their potential effect on membrane biofouling[J]. Applied Microbiology and Biotechnology, 2013, 97(13):5705-5710.
    [58] MENG S, FAN W, LI X, et al. Intermolecular interactions of polysaccharides in membrane fouling during microfiltration[J]. Water Research, 2018, 143(16):38-46.
    [59] LI S, LEE S T, SINHA S, et al. Transparent exopolymer particles (TEP) removal efficiency by a combination of coagulation and ultrafiltration to minimize SWRO membrane fouling[J]. Water Research, 2016, 102(15):485-493.
    [60] KOMLENIC R. Rethinking the causes of membrane biofouling[J]. Filtration & Separation, 2010, 47(5):26-28.
    [61] MENG S, LIU Y. New insights into transparent exopolymer particles (TEP) formation from precursor materials at various Na+/Ca2+ ratios[J]. Scientific Reports, 2016, 6(1):19747.
    [62] SIM L N, SUWARNO S R, LEE D Y S, et al. Online monitoring of transparent exopolymer particles (TEP) by a novel membrane-based spectrophotometric method[J]. Chemosphere, 2019, 220(7):107-115.
    [63] BERMAN T, PARPAROVA R. Visualization of transparent exopolymer particles (TEP) in various source waters[J]. Desalination and Water Treatment, 2010, 21:382-289.
    [64] WETZ M S, ROBBINS M C, PAERL H W. Transparent exopolymer particles (TEP) in a river-dominated estuary:Spatial-temporal distributions and an assessment of controls upon TEP formation[J]. Estuaries and Coasts, 2009, 32(3):447-455.
    [65] SUN C C, WANG Y S, LI Q P, et al. Distribution characteristics of transparent exopolymer particles in the Pearl River estuary, China[J]. Journal of Geophysical Research:Biogeosciences, 2012,G00N17,doi:10.1029/2012JG001951.
    [66] ZAMANILLO M, ORTEGA-RETUERTA E, NUNES S, et al. Distribution of transparent exopolymer particles (TEP) in distinct regions of the Southern Ocean[J]. Science of the Total Environment, 2019, 691(46):736-748.
    [67] GUO S, SUN X. Concentrations and distribution of transparent exopolymer particles in a eutrophic coastal sea:A case study of the Changjiang (Yangtze River) estuary[J]. Marine & Freshwater Research, 2019, 70(10):1389-1401.
    [68] 舒逸, 张桂成, 孙军. 东海PN断面透明胞外聚合颗粒物分布特征及来源研究[J]. 海洋学报, 2018, 40(8):110-119.

    SHU Y, ZHANG G, SUN J. The distribution and origin of transparent exopolymer particles at the PN section in the East China Sea[J]. Acta Oceanologica Sinica, 2018, 40(8):110-119(in Chinese).

    [69] RIEBESELL U, REIGSTAD M, WASSMANN P, et al. On the trophic fate of Phaeocystis pouchetii (Hariot):VI. significience of Phaeocystis-derived mucus for vertical flux[J]. Nertherlands Journal of Sea Research, 1995, 33(2):193-203.
    [70] PRIETO L, COWEN J P. Transparent exopolymer particles in a deep-sea hydrothermal system:Guaymas Basin, Gulf of California[J]. Marine Biology, 2007, 150(6):1093-1101.
    [71] ENGEL A. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes[J]. Deep-Sea Research Part I, 2003, 51(1):83-92.
    [72] GROSSART H P, SIMON M, LOGAN B E. Formation of macroscopic organic aggregates (lake snow) in a large lake:The significance of transparent exopolymer particles, plankton, and zooplankton[J]. Limnology and Oceanography, 1997, 42(8):1651-1659.
    [73] DISCART V, BILAD M R, NEVEL S V, et al. Role of transparent exopolymer particles on membrane fouling in a full-scale ultrafiltration plant:Feed parameter analysis and membrane autopsy[J]. Bioresource Technology, 2014, 173(23):67-74.
    [74] MARI X, BURD A. Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory[J]. Marine Ecology Progress Series, 1998, 163(2):63-76.
    [75] VICENTE I D, ORTEGA-RETUERTA E, MAZUECOS I P, et al. Variation in transparent exopolymer particles in relation to biological and chemical factors in two contrasting lake districts[J]. Aquatic Sciences, 2010, 72(4):443-453.
    [76] HUANG Q, LIU L, QIN B, et al. Abundance, characteristics, and size spectra of transparent exopolymer particles and coomassie stainable particles during spring in a large shallow lake, Taihu, China[J]. Journal of Great Lakes Research, 2016, 42(2):455-463.
    [77] ARNOUS M B, COURCOL N, CARRIAS J F. The significance of transparent exopolymeric particles in the vertical distribution of bacteria and heterotrophic nanoflagellates in Lake Pavin[J]. Aquatic Sciences, 2010, 72(2):245-253.
    [78] ORTEGA-RETUERTA E, DUARTE C M, RECHE I. Significance of bacterial activity for the distribution and dynamics of transparent exopolymer particles in the Mediterranean Sea[J]. Microbial Ecology, 2010, 59(4):808-818.
    [79] ORTEGA-RETUERTA E, MARRAS C, MU OZ-FERN NDEZ A, et al. Seasonal dynamics of transparent exopolymer particles (TEP) and their drivers in the coastal NW Mediterranean Sea[J]. Science of the Total Environment, 2018, 631/632(16):180-190.
    [80] 彭安国, 黄奕普. 九龙江河口区TEP及其与铀、钍、钋同位素相关性的研究[J]. 厦门大学学报(自然科学版), 2007, 46(Z1):38-42. PENG A G, HUANG Y P. Study on TEP and its relationships with uranium, thorium, polonium isotopes in Jiulong Estuary[J]. Journal of Xiamen University(Natural Science), 2007, 46(Z1):38-42(in Chinese).
    [81] PARINOS C, GOGOU A, KRASAKOPOULOU E, et al. Transparent exopolymer particles (TEP) in the NE Aegean Sea frontal area:Seasonal dynamics under the influence of Black Sea water[J]. Continental Shelf Research, 2017, 149(18):112-123.
    [82] NAGARAJ V, SKILLMAN L, LI D, et al. Review-bacteria and their extracellular polymeric substances causing biofouling on seawater reverse osmosis desalination membranes[J]. Journal of Environmental Management, 2018, 223(19):586-599.
    [83] HABIMANA O, SEMIAO A J C, CASEY E. The role of cell-surface interations in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membrane[J]. Journal of Membrane Science, 2014, 454(6):82-96.
    [84] LEE H, PARK C, KIM H, et al. Role of transparent exopolymer particles (TEP) in initial bacterial deposition and biofilm formation on reverse osmosis (RO) membrane[J]. Journal of Membrane Science, 2015, 494(22):25-31.
    [85] VERDUGO P, ALLDREDGE A L, AZAM F, et al. The oceanic gel phase:A bridge in the DOM-POM continuum[J]. Marine Chemistry, 2004, 92:67-85.
    [86] BAR-ZEEV E, PASSOW U, CASTRILL N S R V, et al. Transparent exopolymer particles:From aquatic environments and engineered systems to membrane biofouling[J]. Environmental Science & Technology, 2015, 49(2):691-707.
    [87] FLEMMING H C, WINGENDER J. The bioflim matrix[J]. Nature Reviews Microbiology, 2010, 8(9):623-633.
    [88] YIN X, LI X, HUA Z, et al. The growth process of the cake layer and membrane fouling alleviation mechanism in a MBR assisted with the self-generated electric field[J]. Water Research, 2020, 171(4):115452.
    [89] BERMAN T, MIZRAHI R, DOSORETZ C G. Transparent exopolymer particles (TEP):A critical factor in aquatic biofilm initiation and fouling on filtration membranes[J]. Desalination, 2011, 276:184-190.
    [90] ZHANG Z, CHEN M, LI J, et al. Significance of transparent exopolymer particles derived from aquatic algae in membrane fouling[J]. Arabian Journal of Chemistry, 2020, 13(3):4577-4585.
    [91] LI S, HEIJMAN S G J, VERBERK J Q J C, et al. Fouling control mechanisms of demineralized water backwash:Reduction of charge screenning and calcium bridging effects[J]. Water Research, 2011, 45(19):6289-6300.
    [92] VILLACORTE L O, KENNEDY M D, AMY G L, et al. Measuring transparent exopolymer particles (TEP) as indicator of the (bio)fouling potential of RO feed water[J]. Desalination and Water Treatment, 2009, 5:207-212.
    [93] LIN J C T, WU C Y, CHU Y L, et al. Effects of high turbidity seawater on removal of boron and transparent exopolymer particles by chemical oxo-precipitation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 94(1):109-118.
    [94] SHAO S, FU W, LI X, et al. Membrane fouling by the aggregations formed from oppositely charged organic foulants[J]. Water Research, 2019, 159(12):95-101.
  • 加载中
计量
  • 文章访问数:  2355
  • HTML全文浏览数:  2355
  • PDF下载数:  48
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-03-11

透明胞外聚合颗粒物及其膜污染机理的研究进展

    通讯作者: 刘雅娟, E-mail: dtdxliuyajuan@139.com
  • 1. 山西大同大学化学与化工学院, 大同, 037009;
  • 2. 山西大同大学炭材料研究所, 大同, 037009
基金项目:

山西省回国留学人员科研资助项目(2017-108)和大同市科技计划项目(2018020)资助.

摘要: 透明胞外聚合颗粒物(transparent exopolymer particles,TEP)是一类主要成分为酸性多糖的高黏性有机微凝胶,普遍存在于海水、淡水和废水中,影响碳元素、微生物和颗粒物等在水环境中的迁移循环.TEP是膜分离系统中一种重要的有机污染物,在过滤过程中附着在膜表面或黏附在膜孔内壁,显著增加膜阻力.研究显示,水环境中的藻类和细菌的种类和生长阶段等因素影响TEP的形成和含量.TEP与膜表面生物膜的形成和早期发育密切相关,是膜生物污染形成的主要成因.颗粒态TEP易在微滤、超滤和反渗透膜表面形成滤饼层,而胶体态TEP和TEP前体易阻塞膜孔或通过超微滤膜孔在反渗透膜表面形成凝胶层.电解质能促进胶体态TEP凝聚形成颗粒态TEP减轻超滤膜污染,同时也能被超滤膜截留去除.絮凝、沉淀、过滤等工艺组合可有效去除TEP,更好地控制膜污染.

English Abstract

参考文献 (94)

目录

/

返回文章
返回