铁观音茶园土壤-茶树体系中重金属的生物有效性

孙境蔚, 胡恭任, 于瑞莲, 崔建勇, 颜妍, 张云峰. 铁观音茶园土壤-茶树体系中重金属的生物有效性[J]. 环境化学, 2020, (10): 2765-2776. doi: 10.7524/j.issn.0254-6108.2020022403
引用本文: 孙境蔚, 胡恭任, 于瑞莲, 崔建勇, 颜妍, 张云峰. 铁观音茶园土壤-茶树体系中重金属的生物有效性[J]. 环境化学, 2020, (10): 2765-2776. doi: 10.7524/j.issn.0254-6108.2020022403
SUN Jingwei, HU Gongren, YU Ruilian, CUI Jianyong, YAN Yan, ZHANG Yunfeng. Bioavailability of heavy metals in soil-tea plant system of Tieguanyin tea garden[J]. Environmental Chemistry, 2020, (10): 2765-2776. doi: 10.7524/j.issn.0254-6108.2020022403
Citation: SUN Jingwei, HU Gongren, YU Ruilian, CUI Jianyong, YAN Yan, ZHANG Yunfeng. Bioavailability of heavy metals in soil-tea plant system of Tieguanyin tea garden[J]. Environmental Chemistry, 2020, (10): 2765-2776. doi: 10.7524/j.issn.0254-6108.2020022403

铁观音茶园土壤-茶树体系中重金属的生物有效性

    通讯作者: 于瑞莲, E-mail: ruiliany@hqu.edu.cn
  • 基金项目:

    国家自然科学基金(21177043),公益财团法人东华教育文化交流财团(公财东华教文(18)字第95号),泉州市科技局科技计划(2018Z020)和泉州师范学院博士科研启动项目资助.

Bioavailability of heavy metals in soil-tea plant system of Tieguanyin tea garden

    Corresponding author: YU Ruilian, ruiliany@hqu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21177043), Donghua Education and Cultural Exchange Consortium Public Wealth (Dong Hua Jiao Wen (18) No. 95), Science and Technology Plan Project of Quanzhou(2018Z020) and PhD Research Startup Project of Quanzhou Normal University.
  • 摘要: 茶园土壤中重金属的生物可利用性与其化学形态分布密切相关.本研究采集铁观音主要产区——泉州市安溪县7个茶园14个采样点的表层土壤(0—20 cm)和茶树样品(根、茎、老叶、新叶),采用BCR四步提取法提取土壤样品中6种金属(Cr、Ni、Zn、Cu、Cd、Pb)的4种赋存形态,使用电感耦合等离子质谱仪(ICP-MS)分析土壤样品中金属总量、各赋存形态含量以及茶树样品中金属的含量.使用次生相原生相比值法和风险评价编码法对茶园土壤的生物有效性进行评价,Pearson相关性分析法对土壤的理化性质、金属总量及生物有效性、茶树中金属含量进行分析.结果表明,由于铁观音茶园本身土壤酸化比较严重,Cr、Cu、Cd、Pb以活性态(F1)或者潜在活性态(F2、F3)为主,Ni和Zn残渣态含量较高,但是其他三态含量均不低,因此,使用次生相与原生相比值法(RSP)对铁观音茶园土壤的生物有效性进行评价更加合理;从其评价结果来看,Cd、Pb、Cr具有较强的生物活性,应该特别关注;Pearson相关性分析的结果表明,所有金属的生物活性(RSP)与pH和总有机碳呈负相关关系,金属总量对于金属活性态的影响不显著.因此,控制茶园土壤的酸化、提高茶园土壤的有机质含量,对于降低铁观音茶园土壤中金属的生物活性,降低茶叶的金属富集具有重要作用.
  • 加载中
  • [1] 王燕云,林承奇,黄华斌,等.福建九龙江流域水稻土重金属污染评价及生态风险[J].环境化学,2018,37(12):2800-2808.

    WANG Y Y, LIN C Q, HUANG H B, et al. Pollution assessment and ecological risk of heavy metals in the paddy soils of Jiulong River basin[J]. Environmental Chemistry,2018,37(12):2800-2808(in Chinese).

    [2] HAO X Z, ZHOU D M, HUANG D Q, et al. Heavy metal transfer from soil to vegetable in Southern Jiangsu Province, China[J]. Pedosphere, 2009,19(3):305-311.
    [3] JUNG M C, THORNTON I. Heavy metal Contamination of soils and plants in the vicinity of a lead zinc mine in Korea1[J]. Applied Geochemistry,1996, 11:53-59.
    [4] 张晨晨,胡恭任,于瑞莲,等.晋江感潮河段沉积物重金属的赋存形态与生物有效性[J].环境化学,2015,34(3):505-513.

    ZHANG C C, HU G R, YU R L, et al. Speciation and bioavailability of heavy metals in sediments from tidal reach of the Jinjiang River[J]. Environmental Chemistry, 2015,34(3):505-513(in Chinese).

    [5] 陈培珍,刘缘,叶宏萌,等.武夷山茶园土壤-茶叶中镉、镍、砷分布特征及其生物有效性[J].武夷学院学报,2019,38(6):21-25.

    CHEN P Z, LIU Y, YE H M, et al. Distribution characteristics and bioavailability of cadmium, nickel and arsenic in the tea garden soil of Wuyishan[J]. Journal of Wuyi University, 2019,38(6):21-25(in Chinese).

    [6] 江嵩鹤,胡恭任,于瑞莲,等.安溪铁观音茶园土壤重金属赋存形态及生态风险评价[J].地球与环境,2016,44(3):359-369.

    JIANG S H, HU G R, YU R L, et al. Speciation and ecological risk assessment of heavy metals in soil from Anxi Tieguanyin Tea Garden[J]. Earth and Environment, 2016,44(3):359-369(in Chinese).

    [7] 邱敏娴,胡恭任,于瑞莲,等.泉州湾洛阳江河口潮滩表层沉积物中重金属赋存形态分析[J].环境化学,2013,32(2):212-218.

    QIU M X, HU G R, YU R L, et al. Speciation of heavy metals in the tidal-flat surface sediment from Luoyang River estuary of Quanzhou Bay[J]. Environmental Chemistry, 2013,32(2):212-218(in Chinese).

    [8] NEILSEN D, NEILSEN G H, SINCLAIR A H. Soil phosphorus status, pH and the manganese nutrition of wheat[J]. Plant and Soil,1992, 145:45-50.
    [9] BHARALI A, BARUAH K K, BHATTACHARYYA P, et al. Integrated nutrient management in wheat grown in a Northeast India soil:Impacts on soil organic carbon fractions in relation to grain yield[J]. Soil & Tillage Research, 2017, 168:81-91.
    [10] 中华人民共和国农业部. 茶叶产地环境技术条件:NYT853-2004[S].北京:中国标准出版社, 2004. Ministry of Agriculture of the People's Republic of China. Environmental Requirements for growing area:NYT853-2004[S]. Beijing:Standards Press of China,2004

    (in Chinese).

    [11] FAN D M, FAN K, ZHANG D W, et al. Impact of fertilization on soil polyphenol dynamics and carbon accumulation in a tea plantation, Southern China[J].Journal of Soils and Sediments, 2017, 17(9):2274-2283.
    [12] 李佳璐,姜霞,王书航,等.丹江口水库沉积物重金属形态分布特征及其迁移能力[J].中国环境科学, 2016,6(4):1207-1217.

    LI J L, JIANG X, WANG S H, et al. Heavy metal in sediment of Danjiangkou Reservoir:Chemical speciation and mobility[J]. China Environmental Science, 2016,6(4):1207-1217(in Chinese).

    [13] SUN J W, YU R L, HU G R, et al. Tracing of heavy metal sources and mobility in a soil depth profile via isotopic variation of Pb and Sr[J]. Catena, 2018,440:440-449.
    [14]
    [15] 郝汉舟,靳孟贵,李瑞敏,等.耕地土壤铜、镉、锌形态及生物有效性研究[J].生态环境学报, 2010, 19(1):92-96.

    HAO H Z, JIN M G, LI R M, et al. Fractionations and bioavailability of Cu,Cd and Zn in cultivated land[J]. Ecology and Environmental Sciences, 2010, 19(1):92-96(in Chinese).

    [16] ELLESS M P, BRAY C A, BLAYLOCK M J. Chemical behavior of residential lead in urban yards in the United States[J]. Environmental Pollution, 2007, 148(1):291-300.
    [17] GAO X, CHEN C T A, WANG G, et al. Environmental status of Daya Bay surface sediments inferred from a sequential extraction technique[J].Estuarine, Coastal and Shelf Science,2010, 86(3):369-378.
    [18] KUMAR M, FURUMAI H, KURISU F, et al. Potential mobility of heavy metals through coupled application of sequential extraction and isotopic exchange:Comparison of leaching tests applied to soil and soakaway sediment[J].Chemosphere,2013,90(2):796- 804.
    [19] 谢忠雷,杨佰玲,包国章,等.茶园土壤锌的形态分布及其影响因素[J].农业环境科学学报, 2006, 25(增刊):32-36. XIE Z L, YANG B L, BAO G Z, et al. Distribution of forms of zinc and its affecting factor s in tea garden soils[J]. Journal of Agro-Environment Science, 2006

    , 25(Supplement):32-36(in Chinese).

    [20] PUEYO M, SASTRE J, HERNANDEZ E,et al. Heavy metals in the environment. Prediction of trace element mobility in contaminated soils by sequential extraction[J].Journal of Environmental Quality, 2003, 32:2054-2066.
    [21] 李张伟,易本梁,刘知翔.粤东凤凰山茶区土壤不同形态铅含量及其影响因素[J].水土保持学报,2011,25(4):149-153.

    LI Z W, YI B L, LIU Z X. Distribution characteristics of lead and its affecting factors in the tea garden soils of Fenghuang Mountain,East of Guangdong Province[J]. Journal of Soil and Water Conservation, 2011,25(4):149-153(in Chinese).

    [22] 林跃胜,方凤满,魏晓飞.皖南茶园土壤重金属化学形态及其生物有效性[J].水土保持通报,2014,34(6):59-63.

    LIN Y S, FANG F M, WEI X F. Chemical speciation and bioavailability of heavy metals in tea garden soils in south Anhui Province[J]. Bullentin of Soil and Water Conservation, 2014,34(6):59-63(in Chinese).

    [23] 石元值,韩文炎,马立锋,等.不同茶园土壤中外源铅的形态转化及其生物有效性[J].农业环境科学学报,2010,29(6):1117-1124.

    SHI Y Z, HAN W Y, MA L F, et al. Influence of exogenous lead on change of lead forms and bioavailability in different tea garden soils[J]. Journal of Agro-Environment Science,2010,29(6):1117-1124(in Chinese).

    [24] 陈静生,董林,邓宝山,等.铜在沉积物各相中分配的实验模拟与数值模拟研究-以鄱阳湖为例[J].环境科学学报,1987,7(2):140-149.

    CHEN J S, DONG L, DENG B S, et al. Modeling study on copper partitioning in sediments, a case study of Poyang Lake[J].Acta Scientiae Circumstantiae, 1987,7(2):140-149(in Chinese).

    [25] 孔明,董增林,晁建颖,等.巢湖表层沉积物重金属生物有效性与生态风险评价[J].中国环境科学,2015,35(4):1223-1229.

    KONG M, DONG Z L, CHAO J Y, et al. Bioavailability and ecological risk assessment of heavy metals in surface sediments of Lake Chaohu[J]. China Environmental Science, 2015,35(4):1223-1229(in Chinese).

    [26] SUNDARAY S K, NAYAK B B, LIN S. et al. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-A case study:Mahanadi basin, India[J]. Journal of Hazardous Materials, 2011,186(2/3):1837-1846.
    [27] 陈江军,刘波,蔡烈刚,等.基于多种方法的土壤重金属污染风险评价对比-以江汉平原典型场区为例[J].水文地质工程地质, 2018,45(6):164-172.

    CHEN J J, LIU B, CAI L G, et al. Comparison of risk assessment based on the various methods of heavy metals in soil:A case study for the typical field areas in the Jianghan Plain[J]. Hydrogeology & Engineering Geology, 2018,45(6):164-172(in Chinese).

    [28] 钱翌,张玮,冉德超.青岛城市土壤重金属的形态分布及影响因素分析[J].环境化学,2011,30(3):652-657.

    QIAN Y, ZHANG W, RAN D C. The chemical speciation and influencing factors of heavy metals in Qingdao urban soils[J]. Environmental Chemistry, 2011,30(3):652-657(in Chinese).

    [29] 蔡奎,张蒨,吴云霞,等.河北平原农田土壤重金属形态分布特征及控制因素研究[J].生态毒理学报,2017,12(2):155-168.

    CAI K, ZHANG Q, WU Y X, et al. Speciation distribution and its influencing factors of Cd, Cr, Pb, As, Hg in farmland soil from Heibei Plain, China[J]. Asian Journal of Ecotoxicology, 2017, 12(2):155-168(in Chinese).

    [30] CHOMCHOEI R, SHIOWATANA J, PONGSAKUL P. Continuous-flow system for reduction of metal readsorption during sequential extraction of soil[J]. Analytica Chimica Acta, 2002, 472(1):147-159.
    [31] 杨凤,丁克强,刘廷凤.土壤重金属化学形态转化影响因素的研究进展[J].安徽农业科学,2014,42(29):10083-10084

    ,10096. YANG F, DING K Q, LIU T F. Research advances of distribution and conversion of heavy metal chemical forms and their affecting factors[J]. Journal of Anhui Agricultural Sciences,2014,42(29):10083-10084,10096(in Chinese).

    [32] 钟晓兰,周生路,黄明丽,等.土壤重金属的形态分布特征及其影响因素[J].生态环境学报,2009,18(4):1266-1273.

    ZHONG X L, ZHOU S L, HUANG M L, et al. Distribution of soil heavy metals and its influencing factors[J]. Ecology and Environmental Sciences, 2009,18(4):1266-1273(in Chinese).

    [33] 黎大荣,杨惟薇,黎秋君,等.蚕沙和赤泥用于铅镉污染土壤改良的研究[J].土壤通报,2015,46(4):977-984.

    LI D R, YANG W W, LI Q J, et al. Application of silkworm excrement and red mud for soil remediation contaminated by lead and cadmium[J]. Chinese Journal of Soil Science, 2015, 46(4):977-984(in Chinese).

    [34] WANG H, WANG C X, WANG Z J,et al. Fractionation of heavy metals in surface sediments of Taihu Lake, East China[J]. Environmental Geochemistry and Health, 2004,26(2):303-309.
    [35] KORFALI S I, KARAKI H. Speciation of metals in soils and water:Risk assessment[J]. Environmental Processes,2008,5:101-125.
    [36] 张娅,项朋志,王振峰.应用BCR分析云南蒙自大屯水稻田土壤中重金属形态[J].昆明冶金高等专科学校学报,2013,29(3):71-74.

    ZHANG Y, XIANG P Z, WANG Z F. Heavy metals speciation analysis of soils in rice paddies via BCR in Datun[J]. Journal of Kunming Metallurgy College, 2013,29(3):71-74(in Chinese).

    [37] GRAY C W, MCLAREN R G, ROBERTS A H C, et al. Cadmium phytoavailability in some New Zealand soils[J]. Soil Research, 1999, 37(3):461-478.
    [38] DAYTON E A, BASTA N T, PAYTON M E, et al. Evaluating the contribution of soil properties to modifying lead phytoavailability and phytotoxicity[J]. Environmental Toxicology Chemistry, 2006, 25:719-725.
    [39] ZENG F, ALI S, ZHANG H, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution,2011, 159:84-91.
    [40] CHANG C Y, YU H Y, CHEN J J, et al. Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China[J].Environmental Monitoring and Assessment,2014,186(3):1547- 1560.
  • 加载中
计量
  • 文章访问数:  2622
  • HTML全文浏览数:  2622
  • PDF下载数:  109
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-24
孙境蔚, 胡恭任, 于瑞莲, 崔建勇, 颜妍, 张云峰. 铁观音茶园土壤-茶树体系中重金属的生物有效性[J]. 环境化学, 2020, (10): 2765-2776. doi: 10.7524/j.issn.0254-6108.2020022403
引用本文: 孙境蔚, 胡恭任, 于瑞莲, 崔建勇, 颜妍, 张云峰. 铁观音茶园土壤-茶树体系中重金属的生物有效性[J]. 环境化学, 2020, (10): 2765-2776. doi: 10.7524/j.issn.0254-6108.2020022403
SUN Jingwei, HU Gongren, YU Ruilian, CUI Jianyong, YAN Yan, ZHANG Yunfeng. Bioavailability of heavy metals in soil-tea plant system of Tieguanyin tea garden[J]. Environmental Chemistry, 2020, (10): 2765-2776. doi: 10.7524/j.issn.0254-6108.2020022403
Citation: SUN Jingwei, HU Gongren, YU Ruilian, CUI Jianyong, YAN Yan, ZHANG Yunfeng. Bioavailability of heavy metals in soil-tea plant system of Tieguanyin tea garden[J]. Environmental Chemistry, 2020, (10): 2765-2776. doi: 10.7524/j.issn.0254-6108.2020022403

铁观音茶园土壤-茶树体系中重金属的生物有效性

    通讯作者: 于瑞莲, E-mail: ruiliany@hqu.edu.cn
  • 1. 华侨大学环境科学与工程系, 厦门, 361021;
  • 2. 泉州师范学院资源与环境科学学院, 泉州, 362000;
  • 3. 核工业北京地质研究院分析测试研究中心, 北京, 100029
基金项目:

国家自然科学基金(21177043),公益财团法人东华教育文化交流财团(公财东华教文(18)字第95号),泉州市科技局科技计划(2018Z020)和泉州师范学院博士科研启动项目资助.

摘要: 茶园土壤中重金属的生物可利用性与其化学形态分布密切相关.本研究采集铁观音主要产区——泉州市安溪县7个茶园14个采样点的表层土壤(0—20 cm)和茶树样品(根、茎、老叶、新叶),采用BCR四步提取法提取土壤样品中6种金属(Cr、Ni、Zn、Cu、Cd、Pb)的4种赋存形态,使用电感耦合等离子质谱仪(ICP-MS)分析土壤样品中金属总量、各赋存形态含量以及茶树样品中金属的含量.使用次生相原生相比值法和风险评价编码法对茶园土壤的生物有效性进行评价,Pearson相关性分析法对土壤的理化性质、金属总量及生物有效性、茶树中金属含量进行分析.结果表明,由于铁观音茶园本身土壤酸化比较严重,Cr、Cu、Cd、Pb以活性态(F1)或者潜在活性态(F2、F3)为主,Ni和Zn残渣态含量较高,但是其他三态含量均不低,因此,使用次生相与原生相比值法(RSP)对铁观音茶园土壤的生物有效性进行评价更加合理;从其评价结果来看,Cd、Pb、Cr具有较强的生物活性,应该特别关注;Pearson相关性分析的结果表明,所有金属的生物活性(RSP)与pH和总有机碳呈负相关关系,金属总量对于金属活性态的影响不显著.因此,控制茶园土壤的酸化、提高茶园土壤的有机质含量,对于降低铁观音茶园土壤中金属的生物活性,降低茶叶的金属富集具有重要作用.

English Abstract

参考文献 (40)

返回顶部

目录

/

返回文章
返回