-
湖泊和河流是生活、农业和工业用水的重要来源之一,作为海洋和陆地物质循环的关键性纽带,在全球生物地球化学循环中起着关键作用[1]。水体离子组成主要受蒸发-结晶、风化作用、侵蚀、大气降水以及人类活动等因素的影响,且离子间存在一定的相关关系[2],相关研究指出,我国东部地区如长江等水系主要离子化学特征受碳酸盐和蒸发岩矿物影响较大[3],西部地区如新疆祁漫塔格地区[4],喀什噶尔河流域[5]以及艾比湖流域[6]受岩石风化溶解和蒸发-浓缩作用的影响较大,其他区域如漓江流域,岩石风化溶解对河水中主要离子的影响较大,另外还受一定的人类活动的影响[7]。水体中的化学离子是水化学研究的重要内容,水化学组成是水体在大气、土壤等循环过程中与其所处的周边环境长时间相互作用的结果[8],其成分组成可以对地表风化作用过程和水体自身的迁移和转化过程具有一定的指示作用,而且还可以反映区域水化学元素的来源、组成及含量特征[5,9],水化学组成成分已经成为影响社会发展和人类生存的重要问题而受到普遍关注。
近几年来,对于东平湖环境方面研究的学者较多,主要集中于土壤、沉积物以及水体同位素等方面[10-18],但是针对其水化学方面的探索却鲜有报道。在过去的几十年里,东平湖水类型由碳酸盐型(
$ {\mathrm{C}}_{\text{Ⅱ}}^{\mathrm{C}\mathrm{a}} $ 和$ {\mathrm{C}}_{\text{Ⅲ}}^{\mathrm{C}\mathrm{a}} $ )转变成为硫酸盐型($ {\mathrm{S}}_{\text{Ⅱ}}^{\mathrm{C}\mathrm{a}} $ 和$ {\mathrm{S}}_{\text{Ⅲ}}^{\mathrm{C}\mathrm{a}} $ )[19],溶解性硫酸盐变成该地表水中重要的组分,硫酸根参与了碳酸盐岩风化过程,与大气中CO2的释放过程有着密切的关系,从而对全球碳循环产生影响,所以,硫酸盐的来源解析是需要关注的问题[1],另外,离子组成的来源也至关重要。本文运用空间插值法、数理统计法、Piper三线图、箱型图、相关系数分析以及Gibbs图等方法分析了东平湖主要的水化学参数特征及成因,不但对浅水湖泊与多河流水环境的关系研究具有理论意义,也对缓解北方部分地区水资源短缺问题具有重要的战略意义[20],比如为南水北调东线工程河流-湖泊水资源的合理配置提供科技支撑;除此之外,还可以为今后研究我国东平湖区域以及其他地区地表水的水化学变化、水质特征、合理利用以及对水资源的保护提供依据。
全文HTML
-
东平湖(35°30′—36°20′N,116°00′—116°30′E)位于山东东平县的西部[21],地处黄河与汶河冲积平原相交的条状洼地处[16],东通清河,西连黄河,北起清河口门,南至金线岭围堤,是山东省第二大淡水湖,形似锤[22],湖区总面积约627 km2,常年水面124.3 km2,平均水深2.5 m,蓄水总量3亿m3,东平湖分老湖区与滞洪区两部分,中以二级湖堤分开[23]。老湖区在东北部,面积约209 km2,常年蓄水,即一般所称的东平湖。研究区湖泊所在地为暖温带大陆性半湿润季风气候[24],年均气温为13.30 ℃,年均降水量为640.50 mm[25]。东平湖作为山东省第二大湖泊以及南水北调东线工程重要的调蓄枢纽,在黄河洪峰削峰蓄洪、南水北调工程蓄水、保障区域生态环境安全等方面都具有重要作用[26]。
-
先后于2018年4月、6月、8月、10月对东平湖及周边进行实地考察并进行水质监测和采集,野外采样区域主要包括东平湖湖区、柳长河、小清河、大清河及黄河等,采集水样数量分别为76、84、84、85个。在出发之前都先做好采样点与调查点位置图(图1),对于湖周的水样采集可以利用校对好的GPS测量仪沿湖取点采集,使用采水器进行采水,首先利用便携式温度计(采用美国M316P型便携式电导率仪)测量水温、用TDS测量仪测量TDS等参数,用pH计(采用国产SX620型便携式酸度计)测量pH,随后再用聚乙烯透明塑料瓶采集现场水样用签字笔做好标记,且注意采样前至少润洗3次塑料瓶,随时记录好周边的环境,对于湖心样品的采集要用同样的方法乘船采集。带回实验室的水样进行检测时,首先对水样进行过滤,将过滤好的水样装瓶备用,然后进行水化学组成(Na+ 、Ca2+、Mg2+、K+、
${\rm{HCO}}_3^{-} $ 、${\rm{CO}}_3^{2-} $ 、${\rm{SO}}_4^{2-} $ 、Cl−)的分析测试:Na+ 、K+用火焰光度计进行测定,${\rm{CO}}_3^{2-} $ 、HCO−采用双指标滴定法测定,C1−采用硝酸银滴定法测定,Ca2+、Mg2+、${\rm{SO}}_4^{2-} $ 采用EDTA容量法等。根据实际地形和野外调查的GPS数据运用ArcGIS 10绘制采样点示意图,运用ArcGIS 10中的普通克里格插值方法(Kriging)进行空间插值;运用piper三线图图软件绘制的piper图;运用Origin 2015绘制的箱型图;运用SPSS 18软件统计的相关系数矩阵;运用Excel 2010 绘制的Gibbs图以及其他图表。
1.1. 研究区概况
1.2. 采集与研究方法
-
通过对不同时期东平湖水化学组成进行分析得(表1),4月阳离子质量浓度由大到小依次为Na+ > Ca2+ > Mg2+ >K+,阴离子质量浓度由大到小依次为
${\rm{SO}}_4^{2-} $ >${\rm{HCO}}_3^{-} $ >Cl−>${\rm{CO}}_3^{2-} $ 。阳离子质量浓度的平均值依次为57、41、38、3 mg·L−1,阴离子质量浓度平均值依次为252、148、93、5 mg· L−1。6月阳离子质量浓度由大到小依次为Na+>Ca2+>Mg2+>K+,阴离子质量浓度由大到小依次为${\rm{SO}}_4^{2-} $ >${\rm{HCO}}_3^{-} $ >Cl−>${\rm{CO}}_3^{2-} $ 。阳离子质量浓度的平均值依次为50、45、41、3 mg· L−1,阴离子质量浓度平均值依次为271、154、101、6 mg· L−1。8月阳离子质量浓度由大到小依次为Na+ > Ca2+ > Mg2+ >K+,阴离子质量浓度由大到小依次为${\rm{SO}}_4^{2-} $ >Cl−>${\rm{HCO}}_3^{-} $ >${\rm{CO}}_3^{2-} $ .阳离子质量浓度的平均值依次为57、54、35、2 mg·L−1,阴离子质量浓度的平均值依次为256、181、167、3 mg·L−1。10月阳离子质量浓度由大到小依次为Ca2+>Na+>Mg2+>K+,阴离子质量浓度由大到小依次为${\rm{SO}}_4^{2-} $ >${\rm{HCO}}_3^{-} $ >Cl−>${\rm{CO}}_3^{2-} $ 。阳离子质量浓度的平均值依次为71、31、24、3 mg· L−1,阴离子质量浓度平均值为167、150、107、3 mg·L−1。4月和8月
${\rm{SO}}_4^{2-} $ 含量接近,说明这两个月湖区水质状况近似;10月份 Ca2+含量最高,这主要由于大清河上游河水中钙离子含量较高;8月Cl−含量最高,分析原因发现,8 月降雨量增加以及湖区旅游活动频繁,Cl−会在降水形成的地表径流的作用下从地表土壤进入湖区,再者8月份该地区旅游业较发达人为的增加了湖水的Cl−含量。pH和TDS是反应水中酸碱综合平衡和溶质质量的指标。由表1可知,4月的平均TDS为751 mg·L−1,电导率为1501 μS·cm−1,6月平均TDS为722 mg·l−L,电导率为1446 μS·cm−1,8月平均TDS为656 mg·L−1,电导率为1315 μS·cm−1,10月平均TDS为806 mg·L−1,电导率为955 μS·cm−1。一般情况下,电导率越高,盐分越高,TDS越高。在不同的采样地点所测得的TDS的最大值和最小值相差较大,但是从总体水平上看,各个季节的相差水平不大,其中电导率在一年中前几个月差别略微,但10月数值显著降低。就pH看,4月水体pH9.06,6月pH8.00,8月pH7.49,10月pH8.19,由此可知,研究区水体pH数值在7—9范围附近波动,4月水体的碱性最大,6、8月由于降水等原因数值明显下降,呈现弱碱性,10月pH又略微提高,总体来看呈现碱性且在丰水期有下降趋势,淡水和微咸水各占54.5%和45.5%[27]。研究区域在采样期间温度均保持在20 ℃左右,湖面蒸发较大,且随着湖水温度的不断提高和湖面蒸发的不断增大,各种化学离子浓度亦呈现出不断升高的趋势。
-
TDS能够代表水中溶质质量的综合特征[28],具有一定的代表性,若单独分析各离子会相对繁琐,此外,TDS和电导率相关性极高[29],且pH和水温的变化不明显,因此只选择TDS进行分析。
为了排除异常值对数据的干扰,并有效比较数据的分布规律,用Origin 2015软件将所得数据绘制于箱形图中,分析东平湖水中 TDS 含量统计特征[29]。从图2中可以看出,不同月份水体的 TDS 值分布存在较明显差别,从整体来看,8月TDS值范围分布的最为集中且水体TDS含量最少,为710—785 mg·L−1,6月分布最为分散,TDS范围为635—899 mg·L−1,其次为4月,其TDS范围为710—785 mg·L−1,水体TDS在10月份含量最高,其范围为786—836 mg·L−1,分析各月的离散程度,可知各研究月份东平湖水水体TDS都存在远离四分位值达1.5倍四分位距的异常值。研究区水体的TDS值均高于世界主要大河的均值(283 mg·L−1)[30],也高于文泽伟等[31]研究的龙江-柳江-西江流域4月份和10月份的TDS均值(分别为204.81 mg·L−1和234.20 mg·L−1)。
根据研究区湖区TDS空间插值变化(图3)可得,4月至10月东平湖湖区TDS空间分布差异较大。从4月湖区TDS的空间分布图可知,柳长河入湖口处TDS含量最低,在673.40—722.24 mg·L−1 之间,而湖区TDS最高,出现在湖心岛东侧水域和腊山附近,并且围绕最高值形成了一个高值区[32],该区域菹草生长旺盛而且面积狭小,水流速度缓慢,使得水中溶解大量物质。6月湖区TDS含量由西北向东南呈递减趋势,最小值位于大清河入湖口处,为245 mg·L−1,这说明大清河上游河水中溶解性物质较少,TDS含量较低;最高值出现在小清河出湖口附近,该处由于大量湖水流经此处而且水域面积狭小,造成水中物质沉积,水速相对变缓;导致湖区西部水域 TDS含量较高的原因是由于湖区采沙和开挖航道活动频繁,使得底泥中的溶解性物质大量的溶解到湖水中[32]。8月份图像中呈现出从西北向东南延伸的条带状高值区,在大清河入湖口处和戴庙镇附近水域TDS值最低,说明该处水流速度快,水中溶解物质较少。10月份湖区TDS呈现南北两侧高,中间低的趋势,最低值出现在大清河入湖口处,研究期间大清河属于汛期,河水水量较多,大量的河水从上游涌入湖区,且该河水TDS含量低,流动速度较快,停留时间短,使得入湖口处TDS含量较低;最高值出现在小清河出湖口处和柳长河入湖口处,柳长河是南水北调东线工程从南四湖向东平湖输水的主要河道,在7月初邓楼和八里湾泵站停止工作[32],导致该水域水流速度慢,水中溶解物较多,湖区北部水域狭窄,大量湖水从此处流出,导致北部水体停留时间较长,所以这两处水域 TDS含量较高,表明南水北调工程对东平湖有改善水质的作用。
-
由图4得出,4月湖水的主要水化学类型是SO4-Na、SO4-Ca·Mg 型;河水的主要水化学类型是SO4-Ca、HCO3·SO4-Ca型;大坝水的主要水化学类型是SO4-Ca型。6月湖水的主要水化学类型为SO4-Na·Ca·Mg 型;河水的主要水化学类型是SO4-Na·Ca·Mg 型;大坝水的主要水化学类型是SO4-Ca型。8月湖水的主要水化学类型是SO4-Na、SO4-Ca·Mg 型;河水的主要水化学类型是SO4-Ca 型;大坝水的主要水化学类型是SO4-Ca型。10月湖水的主要水化学类型为SO4-Ca 型;河水的主要水化学类型是HCO3·SO4-Ca 型;大坝水的主要水化学类型是SO4-Ca型。在所分析的水样中,阳离子Na+含量最高,Ca2+稍次之,阴离子SO42-含量最高,研究区水域优势阳离子和窟野河流域地表水[33]相同,阴离子却不同,且只有4月份河水的水化学类型与之相似。湖泊水化学的类型一般会遵循碳酸盐型-硫酸钠型-硫酸镁型-氯化物型的演化规律[34],所以根据水化学类型可以确定东平湖已经处于湖泊演化的中间阶段,属于较为成熟的湖泊。
-
通过水化学参数相关性分析,可大致推断出各离子之间的关系及来源[35]。用SPSS 18软件统计数据,大致可知,TDS与各离子之间的相关系数较为密切。各月份水化学参数相关系数矩阵见表2.
由4月的数值可以得出,K+和Na+、Mg2+、Cl−之间都具极显著相关性;
${\rm{HCO}}_3^{-} $ 和Na+、K+、Mg2+的相关性系数较大。由6月的数值可以得出,TDS和K+、Ca2+、Mg2+、${\rm{CO}}_3^{2-} $ 、${\rm{HCO}}_3^{-} $ 、Cl−、${\rm{SO}}_4^{2-} $ 都有着极显著负相关性,相关性系数依次为−0.843、−0.912、−0.904、−0.595、−0.842、−0.882、−0.926,说明这些离子对TDS的贡献较大,尤其是Ca2+、Mg2+、${\rm{SO}}_4^{2-} $ 相关系数均在−0.9以上,说明这3种离子对TDS的贡献起着决定性的作用。在8月中,Ca2+和${\rm{CO}}_3^{2-} $ 的相关性系数较大。在10月中,TDS与Cl−和${\rm{SO}}_4^{2-} $ 显著相关,${\rm{SO}}_4^{2-} $ 和Mg2+的相关性较强,为0.585,其他各离子之间没有极显著相关性。由相关性分析可得,K和Na普遍具有较强的相关性,具有相似的来源,东平湖水4月Cl/Na数值为1.61,6月Cl/Na值为2.03,8月Cl/Na值为3.20,10月Cl/Na值为3.49,要高于世界海水比值(Cl/Na=1.15)[36],这表明大气环流所携带的海盐对湖水离子组分贡献率很大,并且一年内随月份增加贡献率趋势逐渐增大。K+一般来源于云母、钾长石等的风化,湖水水体中K/Na比值在4个月份的变化范围为0.041—0.084,平均值为0.061,表明研究区Na明显比K高,说明对于一部分钾长石可能并未完全风化,其风化程度很低[3]。研究区
${\rm{HCO}}_3^{-} $ 和Mg2+可能来源于白云岩等碳酸盐岩或黑云母的风化溶解,对于${\rm{SO}}_4^{2-} $ ,在6月与Ca2+的相关性为0.892,4月份是显著负相关,其他月份均没有明显的相关性,表明除了6月强烈的风化作用使得部分石膏溶解,主要还是来源于人类活动,说明人类活动对水化学的影响在枯水期较汛期更显著一些[37]。硅酸岩流域水体中的Ca2+主要来源于钙长石的风化[38],在10月其作为湖水的主要阳离子,表明钙长石风化也是区域主要的风化过程,同时也说明大清河上游河水中钙离子含量较高。东平湖地区地表水类型较复杂多变,阴离子硫酸盐的浓度很高,主要原因是强烈的蒸发作用蒸发岩溶解等以及外源贡献[39],其中主要是由于东平湖附近工矿业或者是农业种植等人为活动的影响带来的有机污染物所致[40-41],农业生产中使用农药、化肥、农膜、农作物秸秆,农村生活污水、生活垃圾及畜禽养殖造成的污染等会对地表水环境造成污染,[42]该研究区的部分离子来源与高店子幅地表水[43]和神府榆矿区[44]窟野河类型以及任孝宗[45]等研究的浑善达克沙地东部地区天然水体也有类似之处,但与泾河支流地表水[37]类型有较大差异,主要因后者水体阴离子中Cl−含量较高。
-
在不考虑人为因素下,Gibbs模式图解常用来识别自然水体中各离子的起源,如岩石风化、大气降水和蒸发结晶作用[46]。Gibbs半对数坐标图纵坐标为对数坐标,表示水体中溶解性离子TDS的总量;横坐标为普通坐标,用Na+/(Na++Ca2+)或Cl−/(Cl−+HCO3−)的比值表示。从整体上来看,在Gibbs图(图5)中,水样点多分布在图的中上部,TDS值较高,大多在600—800之间,Na+/(Na++Ca2+)或Cl− /(Cl−+HCO3−)比值在0.2—0.8之间分布不等,表明东平湖及其周边水体各离子的来源基本上都来自蒸发结晶,部分来自岩石风化,大气降水的输入作用十分微弱;另外大部分水样的水化学组成分布在Gibbs图内,但也有部分水样在Gibbs图外[37],说明水化学组分还受到一定程度的季风气候和人为干扰的影响[44]。
对于东平湖水在4月,阴阳离子比值大都分布在0.2—0.7之间分布,有较高TDS范围,以蒸发结晶影响为主,以岩石风化作用为辅;对于湖周边的河水则主要受岩石风化以及人为活动的影响;大坝(主指戴村坝)则主要受人为活动的影响。在6月,对于东平湖水及其周边河水阳离子比值分布较为集中,且TDS含量很高,表示该地表水阳离子主要受强烈的蒸发作用,而对于阴离子比值则较为分散,比值在0.2—0.6范围内,同样的TDS含量很高,说明该处地表水阴离子来源较为分散,同时受岩石风化、蒸发结晶和人类活动影响的作用。然而8月的阴阳离子起源恰好和6月相反:阳离子多来自岩石风化,阴离子多来自蒸发结晶,对于10月,阳离子比值数据点往右偏移,因此研究区水化学受蒸发浓缩作用的影响强于岩石风化作用,湖水相对于河水受蒸发浓缩作用更明显,而由阴离子比值图则可以看出研究区水化学主要受岩石风化和人为因素的影响,并且阳离子比值要明显大于阴离子比值,说明了阴阳离子的起源具有明显的差别。
研究区各水体在Gibbs图上分布相对集中,表明不同水体的离子成分有相同的来源、补给源,且相互之间水力联系密切[47]。研究区水体离子组分主要来源于蒸发结晶,部分组分来源于岩石风化, 大气降水的输入作用十分微弱,且由于地表水的水-岩作用时间短,二氧化碳供给充分,因而来自岩石风化的部分多来自于碳酸盐岩风化。该地区4月和10月为春秋季节,降水较少,径流量及降水量减少,地表水被稀释作用影响较小,同时受到人为活动的影响较大;6月和8月为夏季,降水较多,流量和降水的增加稀释了人为因素对水体造成的影响[16],所以对于东平湖地区,人为活动的影响春秋季节大于夏季。此结果与李瑞[48]、朱世丹[6]等研究的艾比湖区域地表水化学来源类似,说明地表水化学起源都大同小异。
2.1. 东平湖水化学特征
2.1.1. 水化学参数分析
2.1.2. TDS的时空分布
2.1.3. 水化学的类型
2.2. 水化学的组成来源
2.2.1. 不同离子的相关系数分析
2.3. 基于Gibbs半对数坐标图的离子分析
-
(1)东平湖地表水整体呈现碱性,地表水阳离子中Na+和Ca2+占主导地位,阴离子中
${\rm{SO}}_4^{2-} $ 占主导地位;研究区地表水TDS和总硬度总体偏高,TDS时空分布差异显著,8月份的TDS值明显低于其他3个月份,10月份总体浓度最高,6月湖区TDS含量从湖区西北向东南逐渐递减,10月从湖心向南北两侧逐渐递增。对于TDS的研究得南水北调东线工程的通水有利于东平湖湖水环境的改善。(2)研究区地表水湖水的主要水化学类型由SO4-Na→SO4-Ca·Mg→SO4-Ca型转变;河水的主要水化学类型是SO4-Ca、SO4-Ca·Mg 型;大坝水的主要水化学类型是SO4-Ca型。水体K+ 和Na+来源于大气环流所携带的海盐,HCO3−和Mg2+可能来源于白云岩等碳酸盐岩或黑云母的风化溶解,
${\rm{SO}}_4^{2-} $ 则主要来源于人类活动,少量来自石膏溶解, Ca2+则来源于钙长石的风化以及石膏的溶解。(3)研究区水体离子组分主要来源于蒸发结晶,部分组分来源于岩石风化,大气降水的输入作用十分微弱,另外受到人为活动的影响较大。