高级氧化技术去除水体中抗性基因污染的研究进展
A review: Elimination of antibiotic resistance genes in water by advanced oxidation progress
-
摘要: 抗性基因(ARGs)污染已被联合国卫生组织列为21世纪新型三大污染问题之一,具备种类多样、转移方式灵活、污染风险存在极大的不确定性等特点.通过相应技术措施削减水体中的抗性基因污染,具有突出的现实意义.高级氧化技术(AOPs)降解效率高、条件可控、可操作性强,在水体深度处理上展现了良好的优势.本文综述了基于高级氧化技术的抗性基因污染治理方法研究进展,讨论了不同高级氧化技术(类Fenton氧化、光催化氧化、过硫酸盐氧化以及臭氧氧化)对抗性基因去除的影响,同时以此为背景展望了处理抗性基因污染的未来可研究方向.Abstract: Antibiotic resistant gene (ARGs) pollution has been listed as one of the three latest pollution problems in the 21st century by the United Nations health organization, which has the characteristics of diversity, flexible transformation mode, and great uncertainty of pollution risk. It is of great practical significance to reduce the resistance gene pollution in water by employing relevant technical measures. Advanced oxidation progress technology (AOPs) has the advantages of high efficiency, controllable preparation conditions and strong operability, which have shown good performance in the advanced treatment of water body. This paper briefly reviewed the research progress of resistance gene pollution control methods based on AOPs technologies, and the influence of different AOPs technologies (Fenton-like oxidation, photocatalytic oxidation, persulfate oxidation and ozone oxidation) on ARGs elimination was discussed. Simultaneously, based on this background, the future research direction of ARGs gene pollution treatment was prospected.
-
Key words:
- antibiotic resistant genes /
- advanced oxidation /
- elimination
-
-
[1] 窦春玲, 郭雪萍, 尹大强.污水处理厂抗生素抗性基因分布和去除研究进展[J]. 环境化学, 2013, 32(10):1885-1893. DOU C L, GUO X P, YIN D Q. Review on distribution and removal of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs)[J]. Environmental Chemistry, 2013, 32(10):1885-1893(in Chinese).
[2] BARTON B C, RAJAL K M, JUNGK J, et al. 2008 Outbreak of salmonella saintpaul infections associated with raw produce[J]. New England Journal of Medicine, 2011, 364(10):918-927. [3] 苏建强, 黄福义, 朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013, 4:98-104. SU J Q, HUANG F Y, ZHU Y G. Antibiotic resistance genes in the environment[J]. Biodiversity Science, 2013 , 4:98-104(in Chinese).
[4] LAMORI J G, XUE J, RACHMADI A T, et al. Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands[J]. Environmental Science and Pollution Research, 2019, 26(10):10188-10197. [5] KORZENIEWSKA E, HARNISZ M. Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria[J]. Science of the Total Environment, 2018, 639:304-315. [6] SHARMA V K, JONHSON N, CIZMAS L, et al. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes[J]. Chemosphere, 2016, 150(3):702-714. [7] 方景礼. 废水处理的实用高级氧化技术第一部分——各类高级氧化技术的原理、特性和优缺点[J]. 电镀与涂饰, 2014,33(8):350-355. FANG L J. Practical advanced oxidation processes for waste water treatment:I. the principle, characteristic, advantage and disadvantage of various advanced oxidation technologies[J]. Electroplating & Finishing, 2014, 33(8):350-355(in Chinese).
[8] MIRZAEI A, CHEN Z, HAGHIGHAT F, et al. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes:A review[J]. Chemosphere, 2017, 174:665-688. [9] GUNTEN U V. Ozonation of drinking water:Part I. Oxidation kinetics and product formation[J]. Water Research, 2003,37(7):1443-1467. [10] YU J, SAVAGE P E. Kinetics of catalytic supercritical water oxidation of phenol over TiO2[J]. Environmental Science & Technology, 2000, 34:2659-2664. [11] AN T, YANG H, LI G, et al. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water[J]. Applied Catalysis B Environmental, 2010, 94(3):288-294. [12] KANG J, ZHOU L, DUAN X, et al. Degradation of cosmetic microplastics via functionalized carbon nanosprings[J]. Matter, 2019, 1(3):745-758. [13] CARUSI A, DAVIES M R, GRANDIS G D, et al. Harvesting the promise of AOPs:An assessment and recommendations[J]. Science of the Total Environment, 2018, 628-629:1542-1556. [14] ELISABET M, ELENI V, LUIS B J. The role of aquatic ecosystems as reservoirs of antibiotic resistance[J]. Trends in Microbiology, 2014, 22(1):36-41. [15] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450. [16] D'COSTA V M, KING C E, KALAN L, et al. Antibiotic resistance is ancient[J]. Nature, 2011, 477(7365):457-461. [17] LANG K S, ANDERSON J M, SCHWARZ S, et al. Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics[J]. Applied & Environment Microbiology, 2010, 76(15):5321-5326. [18] UNNO T, HAN D, JANG J, et al. High diversity and abundance of antibiotic-resistant Escherichia coli isolated from humans and farm animal hosts in Jeonnam Province, South Korea[J]. Science of the Total Environment, 2010, 408(17):3499-3506. [19] GUO X, LI J, YANG F, et al. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China[J]. Science of the Total Environment, 2014, 493:626-631. [20] HEUER H, SCHMITT H, SMALLA K. Antibiotic resistance gene spread due to manure application on agricultural fields[J]. Current Opinion in Microbiology, 2011, 14(3):236-243. [21] CETIN E S, GUNES H, KAYA S, et al. Distribution of genes encoding resistance to macrolides, lincosamides and streptogramins among clinical staphylococcal isolates in a Turkish university hospital[J]. Journal of Microbiology, Immunology and Infection, 2010, 43(6):524-529. [22] XU L, OUYANG W, QIAN Y, et al. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems[J]. Environmental Pollution, 2016, 213:119-126. [23] ZHU Y G, TIMOTHY A J, SU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences, 2013, 110(9):3435-3440. [24] 朱玥晗, 姚钦, 李森, 等. 环境中抗生素抗性基因及消减途径研究[J]. 土壤与作物, 2019(2):186-194. ZHU Y H, YAO Q, LI S, et al. Antibiotic resistance genes and approaches for reducing their abundance in environments[J]. Soils and Crops, 2019 (2):186-194(in Chinese).
[25] PEAK N, KNAPP C W, YANG R K, et al. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies[J]. Environmental Microbiology, 2007, 9(1):143-151. [26] XU J, XU Y, WANG H, et al. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river.[J]. Chemosphere, 2015, 119:1379-1385. [27] YU Z, HE P, SHAO L, et al. Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates:A preliminary insight into the role of landfill age[J]. Water Research, 2016, 106:583-592. [28] 王丽梅, 罗义, 毛大庆, 等. 抗生素抗性基因在环境中的传播扩散及抗性研究方法[J]. 应用生态学报, 2010, 21(4):1063-1069. WANG L M, LUO Y, MAO D Q, et al. Transport of antibiotic resistance genes in environment and detection methods of antibiotic resistance[J]. Chinese Journal of Applied Ecology, 2010, 21(4):1063-1069(in Chinese).
[29] FARAG I F, HAGAG M M. Horizontal gene transfer (HGT):A driving force for resistance dissemination in gut microbiota[J]. Current Opinion in Biotechnology, 2011(22):S123. [30] 刘晶冰, 燕磊, 白文荣, 等. 高级氧化技术在水处理的研究进展[J]. 水处理技术, 2011, 37(3):11-17. LIU J B, YAN L, BAI W R,et al. Study progress of water treatment by advanced oxidation processes[J]. Technology of Water Treatment, 2011, 37(3):11-17(in Chinese).
[31] CHEN F, XIE S, HUANG X, et al. Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2[J]. Journal of Hazardous Materials, 2017, 322:152-162. [32] 张德莉, 黄应平, 罗光富, 等. Fenton及Photo-Fenton反应研究进展[J]. 环境化学, 2006, 24(2):7-13. ZHANG D L, HUANG Y P, LUO G F.Research progress of fenton and photo-fenton reaction[J]. Environmental Chemistry, 2006, 24(2):7-13(in Chinese).
[33] KARAOLOA P, MICHAEL-KORDATOU I, HAPESHI E, et al. Investigation of the potential of a membrane bioreactor followed by solar Fenton oxidation to remove antibiotic-related microcontaminants[J]. Chemical Engineering Journal, 2016, 310(2):491-502 [34] GIANNAKIS S, Le T T M, ENTENZA J M, et al. Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment[J]. Water Research, 2018, 143:334-345. [35] SERNA-GALVIS E A, VELEZ-PENA E, OSORIO-VARGAS P A, et al. Inactivation of carbapenem-resistant Klebsiella pneumoniae by photo-Fenton:Residual effect, gene evolution and modifications with citric acid and persulfate[J]. Water Research, 2019, 161:354-363. [36] HOU J, CHEN Z, GAO J, et al. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies[J]. Water Research, 2019, 159:511-520. [37] MICHAEL S G, M MICHAEL-KORDATOU I, BERETSOU V G, et al. Solar photo-Fenton oxidation followed by adsorption on activated carbon for the minimisation of antibiotic resistance determinants and toxicity present in urban wastewater[J]. Applied Catalysis B:Environmental, 2019, 244:871-880. [38] WANG K, LIU B, LI J, et al. In-situ synthesis of TiO2 nanostructures on Ti foil for enhanced and stable photocatalytic performance[J]. Journal of Materials Science & Technology, 2019, 35(4):615-622. [39] JIA Y, ZHAN S, MA S, et al. Fabrication of TiO2-Bi2WO6 binanosheet for enhanced solar photocatalytic disinfection of E. coli:insights on the mechanism[J]. ACS Applied Materials & Interfaces, 2016, 8(11):6841-6851. [40] HWANGBO M, CLAYCOMB E C, LIU Y, et al. Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater:1, 4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs)[J]. Science of the Total Environment, 2019, 649:1189-1197. [41] CAI Q, HU J. Effect of UVA/LED/TiO2 photocatalysis treated sulfamethoxazole and trimethoprim containing wastewater on antibiotic resistance development in sequencing batch reactors[J]. Water Research, 2018, 140:251-260. [42] MOREIRA N F F, NARCISO-DA-ROCHA C, POLO-LOPEZ M I, et al. Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater[J]. Water Research, 2018, 135:195-206. [43] REN S, BOO C, GUO N, et al. Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent[J]. Environmental Science & Technology, 2018, 52(15):8666-8673. [44] KARAOLOA P, MICHAEL-KORDATOU I, HAPESHI E, et al. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters[J]. Applied Catalysis B:Environmental, 2018, 224:810-824. [45] 杨世迎, 陈友媛, 胥慧真, 等. 过硫酸盐活化高级氧化新技术[J]. 化学进展, 2008(9):195-200. YANG S Y, CHEN Y Y, XUN H Z, et al. A novel advanced oxidation technology based on activated persulfate[J]. Progress in Chemistry, 2008 (9):195-200(in Chinese).
[46] KANG Y G, VU H C, LE T T, et al. Activation of persulfate by a novel Fe (Ⅱ)-immobilized chitosan/alginate composite for bisphenol A degradation[J]. Chemical Engineering Journal, 2018, 353:736-745. [47] HU Y R, ZHANG T Y, JIANG L, et al. Removal of sulfonamide antibiotic resistant bacterial and intracellular antibiotic resistance genes by UVC-activated peroxymonosulfate[J]. Chemical Engineering Journal, 2019, 368:888-895. [48] ZHANG L L, JIN H, MA H K, et al. Oxidative damage of antibiotic resistant E. coli and gene in a novel sulfidated micron zero-valent activated persulfate system[J]. Chemical Engineering Journal, 2020, 381:122787 [49] RODRIGUEZ-CHUECA J, DELLA G S V, ROCHA J, et al. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs:Removal or persistence of antibiotics and antibiotic resistance genes[J]. Science of the Total Environment, 2019, 652:1051-1061. [50] GUMUS D, AKBAL F. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid[J]. Chemosphere, 2017, 174:218-231. [51] ÖNCU N B, MENCELOGLU Y Z, BALCIOGLU I A. Comparison of the effectiveness of chlorine, ozone, and photocatalytic disinfection in reducing the risk of antibiotic resistance pollution[J]. Journal of Advanced Oxidation Technologies, 2011, 14(2):196-203. -

计量
- 文章访问数: 3726
- HTML全文浏览数: 3726
- PDF下载数: 160
- 施引文献: 0