高级氧化技术去除水体中抗性基因污染的研究进展

杨梖, 刘颢, 俞映倞, 冯彦房, 杨林章, 薛利红. 高级氧化技术去除水体中抗性基因污染的研究进展[J]. 环境化学, 2021, (4): 1263-1273. doi: 10.7524/j.issn.0254-6108.2019110302
引用本文: 杨梖, 刘颢, 俞映倞, 冯彦房, 杨林章, 薛利红. 高级氧化技术去除水体中抗性基因污染的研究进展[J]. 环境化学, 2021, (4): 1263-1273. doi: 10.7524/j.issn.0254-6108.2019110302
YANG Bei, LIU Hao, YU Yingliang, FENG Yanfang, YANG Linzhang, XUE Lihong. A review: Elimination of antibiotic resistance genes in water by advanced oxidation progress[J]. Environmental Chemistry, 2021, (4): 1263-1273. doi: 10.7524/j.issn.0254-6108.2019110302
Citation: YANG Bei, LIU Hao, YU Yingliang, FENG Yanfang, YANG Linzhang, XUE Lihong. A review: Elimination of antibiotic resistance genes in water by advanced oxidation progress[J]. Environmental Chemistry, 2021, (4): 1263-1273. doi: 10.7524/j.issn.0254-6108.2019110302

高级氧化技术去除水体中抗性基因污染的研究进展

    通讯作者: 薛利红, E-mail: njxuelihong@gmail.com
  • 基金项目:

    国家水体污染控制与治理科技重大专项子课题(2017ZX07401002-001)和省部共建国家重点实验室培育基地——江苏省食品质量安全重点实验室自主研究课题(2019zh001)资助.

A review: Elimination of antibiotic resistance genes in water by advanced oxidation progress

    Corresponding author: XUE Lihong, njxuelihong@gmail.com
  • Fund Project: Supported by China National Critical Project for Science and Technology on Water Pollution Prevention and Control (2017ZX07401002-001) and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology (2019zh001).
  • 摘要: 抗性基因(ARGs)污染已被联合国卫生组织列为21世纪新型三大污染问题之一,具备种类多样、转移方式灵活、污染风险存在极大的不确定性等特点.通过相应技术措施削减水体中的抗性基因污染,具有突出的现实意义.高级氧化技术(AOPs)降解效率高、条件可控、可操作性强,在水体深度处理上展现了良好的优势.本文综述了基于高级氧化技术的抗性基因污染治理方法研究进展,讨论了不同高级氧化技术(类Fenton氧化、光催化氧化、过硫酸盐氧化以及臭氧氧化)对抗性基因去除的影响,同时以此为背景展望了处理抗性基因污染的未来可研究方向.
  • 加载中
  • [1] 窦春玲, 郭雪萍, 尹大强.污水处理厂抗生素抗性基因分布和去除研究进展[J]. 环境化学, 2013, 32(10):1885-1893.

    DOU C L, GUO X P, YIN D Q. Review on distribution and removal of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs)[J]. Environmental Chemistry, 2013, 32(10):1885-1893(in Chinese).

    [2] BARTON B C, RAJAL K M, JUNGK J, et al. 2008 Outbreak of salmonella saintpaul infections associated with raw produce[J]. New England Journal of Medicine, 2011, 364(10):918-927.
    [3] 苏建强, 黄福义, 朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013, 4:98-104. SU J Q, HUANG F Y, ZHU Y G. Antibiotic resistance genes in the environment[J]. Biodiversity Science, 2013

    , 4:98-104(in Chinese).

    [4] LAMORI J G, XUE J, RACHMADI A T, et al. Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands[J]. Environmental Science and Pollution Research, 2019, 26(10):10188-10197.
    [5] KORZENIEWSKA E, HARNISZ M. Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria[J]. Science of the Total Environment, 2018, 639:304-315.
    [6] SHARMA V K, JONHSON N, CIZMAS L, et al. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes[J]. Chemosphere, 2016, 150(3):702-714.
    [7] 方景礼. 废水处理的实用高级氧化技术第一部分——各类高级氧化技术的原理、特性和优缺点[J]. 电镀与涂饰, 2014,33(8):350-355.

    FANG L J. Practical advanced oxidation processes for waste water treatment:I. the principle, characteristic, advantage and disadvantage of various advanced oxidation technologies[J]. Electroplating & Finishing, 2014, 33(8):350-355(in Chinese).

    [8] MIRZAEI A, CHEN Z, HAGHIGHAT F, et al. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes:A review[J]. Chemosphere, 2017, 174:665-688.
    [9] GUNTEN U V. Ozonation of drinking water:Part I. Oxidation kinetics and product formation[J]. Water Research, 2003,37(7):1443-1467.
    [10] YU J, SAVAGE P E. Kinetics of catalytic supercritical water oxidation of phenol over TiO2[J]. Environmental Science & Technology, 2000, 34:2659-2664.
    [11] AN T, YANG H, LI G, et al. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water[J]. Applied Catalysis B Environmental, 2010, 94(3):288-294.
    [12] KANG J, ZHOU L, DUAN X, et al. Degradation of cosmetic microplastics via functionalized carbon nanosprings[J]. Matter, 2019, 1(3):745-758.
    [13] CARUSI A, DAVIES M R, GRANDIS G D, et al. Harvesting the promise of AOPs:An assessment and recommendations[J]. Science of the Total Environment, 2018, 628-629:1542-1556.
    [14] ELISABET M, ELENI V, LUIS B J. The role of aquatic ecosystems as reservoirs of antibiotic resistance[J]. Trends in Microbiology, 2014, 22(1):36-41.
    [15] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450.
    [16] D'COSTA V M, KING C E, KALAN L, et al. Antibiotic resistance is ancient[J]. Nature, 2011, 477(7365):457-461.
    [17] LANG K S, ANDERSON J M, SCHWARZ S, et al. Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics[J]. Applied & Environment Microbiology, 2010, 76(15):5321-5326.
    [18] UNNO T, HAN D, JANG J, et al. High diversity and abundance of antibiotic-resistant Escherichia coli isolated from humans and farm animal hosts in Jeonnam Province, South Korea[J]. Science of the Total Environment, 2010, 408(17):3499-3506.
    [19] GUO X, LI J, YANG F, et al. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China[J]. Science of the Total Environment, 2014, 493:626-631.
    [20] HEUER H, SCHMITT H, SMALLA K. Antibiotic resistance gene spread due to manure application on agricultural fields[J]. Current Opinion in Microbiology, 2011, 14(3):236-243.
    [21] CETIN E S, GUNES H, KAYA S, et al. Distribution of genes encoding resistance to macrolides, lincosamides and streptogramins among clinical staphylococcal isolates in a Turkish university hospital[J]. Journal of Microbiology, Immunology and Infection, 2010, 43(6):524-529.
    [22] XU L, OUYANG W, QIAN Y, et al. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems[J]. Environmental Pollution, 2016, 213:119-126.
    [23] ZHU Y G, TIMOTHY A J, SU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences, 2013, 110(9):3435-3440.
    [24] 朱玥晗, 姚钦, 李森, 等. 环境中抗生素抗性基因及消减途径研究[J]. 土壤与作物, 2019(2):186-194. ZHU Y H, YAO Q, LI S, et al. Antibiotic resistance genes and approaches for reducing their abundance in environments[J]. Soils and Crops, 2019

    (2):186-194(in Chinese).

    [25] PEAK N, KNAPP C W, YANG R K, et al. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies[J]. Environmental Microbiology, 2007, 9(1):143-151.
    [26] XU J, XU Y, WANG H, et al. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river.[J]. Chemosphere, 2015, 119:1379-1385.
    [27] YU Z, HE P, SHAO L, et al. Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates:A preliminary insight into the role of landfill age[J]. Water Research, 2016, 106:583-592.
    [28] 王丽梅, 罗义, 毛大庆, 等. 抗生素抗性基因在环境中的传播扩散及抗性研究方法[J]. 应用生态学报, 2010, 21(4):1063-1069.

    WANG L M, LUO Y, MAO D Q, et al. Transport of antibiotic resistance genes in environment and detection methods of antibiotic resistance[J]. Chinese Journal of Applied Ecology, 2010, 21(4):1063-1069(in Chinese).

    [29] FARAG I F, HAGAG M M. Horizontal gene transfer (HGT):A driving force for resistance dissemination in gut microbiota[J]. Current Opinion in Biotechnology, 2011(22):S123.
    [30] 刘晶冰, 燕磊, 白文荣, 等. 高级氧化技术在水处理的研究进展[J]. 水处理技术, 2011, 37(3):11-17.

    LIU J B, YAN L, BAI W R,et al. Study progress of water treatment by advanced oxidation processes[J]. Technology of Water Treatment, 2011, 37(3):11-17(in Chinese).

    [31] CHEN F, XIE S, HUANG X, et al. Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2[J]. Journal of Hazardous Materials, 2017, 322:152-162.
    [32] 张德莉, 黄应平, 罗光富, 等. Fenton及Photo-Fenton反应研究进展[J]. 环境化学, 2006, 24(2):7-13.

    ZHANG D L, HUANG Y P, LUO G F.Research progress of fenton and photo-fenton reaction[J]. Environmental Chemistry, 2006, 24(2):7-13(in Chinese).

    [33] KARAOLOA P, MICHAEL-KORDATOU I, HAPESHI E, et al. Investigation of the potential of a membrane bioreactor followed by solar Fenton oxidation to remove antibiotic-related microcontaminants[J]. Chemical Engineering Journal, 2016, 310(2):491-502
    [34] GIANNAKIS S, Le T T M, ENTENZA J M, et al. Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment[J]. Water Research, 2018, 143:334-345.
    [35] SERNA-GALVIS E A, VELEZ-PENA E, OSORIO-VARGAS P A, et al. Inactivation of carbapenem-resistant Klebsiella pneumoniae by photo-Fenton:Residual effect, gene evolution and modifications with citric acid and persulfate[J]. Water Research, 2019, 161:354-363.
    [36] HOU J, CHEN Z, GAO J, et al. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies[J]. Water Research, 2019, 159:511-520.
    [37] MICHAEL S G, M MICHAEL-KORDATOU I, BERETSOU V G, et al. Solar photo-Fenton oxidation followed by adsorption on activated carbon for the minimisation of antibiotic resistance determinants and toxicity present in urban wastewater[J]. Applied Catalysis B:Environmental, 2019, 244:871-880.
    [38] WANG K, LIU B, LI J, et al. In-situ synthesis of TiO2 nanostructures on Ti foil for enhanced and stable photocatalytic performance[J]. Journal of Materials Science & Technology, 2019, 35(4):615-622.
    [39] JIA Y, ZHAN S, MA S, et al. Fabrication of TiO2-Bi2WO6 binanosheet for enhanced solar photocatalytic disinfection of E. coli:insights on the mechanism[J]. ACS Applied Materials & Interfaces, 2016, 8(11):6841-6851.
    [40] HWANGBO M, CLAYCOMB E C, LIU Y, et al. Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater:1, 4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs)[J]. Science of the Total Environment, 2019, 649:1189-1197.
    [41] CAI Q, HU J. Effect of UVA/LED/TiO2 photocatalysis treated sulfamethoxazole and trimethoprim containing wastewater on antibiotic resistance development in sequencing batch reactors[J]. Water Research, 2018, 140:251-260.
    [42] MOREIRA N F F, NARCISO-DA-ROCHA C, POLO-LOPEZ M I, et al. Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater[J]. Water Research, 2018, 135:195-206.
    [43] REN S, BOO C, GUO N, et al. Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent[J]. Environmental Science & Technology, 2018, 52(15):8666-8673.
    [44] KARAOLOA P, MICHAEL-KORDATOU I, HAPESHI E, et al. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters[J]. Applied Catalysis B:Environmental, 2018, 224:810-824.
    [45] 杨世迎, 陈友媛, 胥慧真, 等. 过硫酸盐活化高级氧化新技术[J]. 化学进展, 2008(9):195-200. YANG S Y, CHEN Y Y, XUN H Z, et al. A novel advanced oxidation technology based on activated persulfate[J]. Progress in Chemistry, 2008

    (9):195-200(in Chinese).

    [46] KANG Y G, VU H C, LE T T, et al. Activation of persulfate by a novel Fe (Ⅱ)-immobilized chitosan/alginate composite for bisphenol A degradation[J]. Chemical Engineering Journal, 2018, 353:736-745.
    [47] HU Y R, ZHANG T Y, JIANG L, et al. Removal of sulfonamide antibiotic resistant bacterial and intracellular antibiotic resistance genes by UVC-activated peroxymonosulfate[J]. Chemical Engineering Journal, 2019, 368:888-895.
    [48] ZHANG L L, JIN H, MA H K, et al. Oxidative damage of antibiotic resistant E. coli and gene in a novel sulfidated micron zero-valent activated persulfate system[J]. Chemical Engineering Journal, 2020, 381:122787
    [49] RODRIGUEZ-CHUECA J, DELLA G S V, ROCHA J, et al. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs:Removal or persistence of antibiotics and antibiotic resistance genes[J]. Science of the Total Environment, 2019, 652:1051-1061.
    [50] GUMUS D, AKBAL F. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid[J]. Chemosphere, 2017, 174:218-231.
    [51] ÖNCU N B, MENCELOGLU Y Z, BALCIOGLU I A. Comparison of the effectiveness of chlorine, ozone, and photocatalytic disinfection in reducing the risk of antibiotic resistance pollution[J]. Journal of Advanced Oxidation Technologies, 2011, 14(2):196-203.
  • 加载中
计量
  • 文章访问数:  3726
  • HTML全文浏览数:  3726
  • PDF下载数:  160
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-03
杨梖, 刘颢, 俞映倞, 冯彦房, 杨林章, 薛利红. 高级氧化技术去除水体中抗性基因污染的研究进展[J]. 环境化学, 2021, (4): 1263-1273. doi: 10.7524/j.issn.0254-6108.2019110302
引用本文: 杨梖, 刘颢, 俞映倞, 冯彦房, 杨林章, 薛利红. 高级氧化技术去除水体中抗性基因污染的研究进展[J]. 环境化学, 2021, (4): 1263-1273. doi: 10.7524/j.issn.0254-6108.2019110302
YANG Bei, LIU Hao, YU Yingliang, FENG Yanfang, YANG Linzhang, XUE Lihong. A review: Elimination of antibiotic resistance genes in water by advanced oxidation progress[J]. Environmental Chemistry, 2021, (4): 1263-1273. doi: 10.7524/j.issn.0254-6108.2019110302
Citation: YANG Bei, LIU Hao, YU Yingliang, FENG Yanfang, YANG Linzhang, XUE Lihong. A review: Elimination of antibiotic resistance genes in water by advanced oxidation progress[J]. Environmental Chemistry, 2021, (4): 1263-1273. doi: 10.7524/j.issn.0254-6108.2019110302

高级氧化技术去除水体中抗性基因污染的研究进展

    通讯作者: 薛利红, E-mail: njxuelihong@gmail.com
  • 1. 江苏省农业科学院, 江苏省食品质量安全重点实验室, 南京, 210014;
  • 2. 江苏省农业科学院, 农业农村部长江下游平原农业环境重点实验室, 南京, 210014;
  • 3. 中国科学院南京地理与湖泊研究所, 湖泊与环境国家重点实验室, 南京, 210008
基金项目:

国家水体污染控制与治理科技重大专项子课题(2017ZX07401002-001)和省部共建国家重点实验室培育基地——江苏省食品质量安全重点实验室自主研究课题(2019zh001)资助.

摘要: 抗性基因(ARGs)污染已被联合国卫生组织列为21世纪新型三大污染问题之一,具备种类多样、转移方式灵活、污染风险存在极大的不确定性等特点.通过相应技术措施削减水体中的抗性基因污染,具有突出的现实意义.高级氧化技术(AOPs)降解效率高、条件可控、可操作性强,在水体深度处理上展现了良好的优势.本文综述了基于高级氧化技术的抗性基因污染治理方法研究进展,讨论了不同高级氧化技术(类Fenton氧化、光催化氧化、过硫酸盐氧化以及臭氧氧化)对抗性基因去除的影响,同时以此为背景展望了处理抗性基因污染的未来可研究方向.

English Abstract

参考文献 (51)

返回顶部

目录

/

返回文章
返回