UiO-66(Zr)@多孔陶瓷复合材料的制备及对络合态重金属EDTA-Cu(Ⅱ)的去除

陈倩, 吴一楠, 蒋天遥, 张彦星, 郑璐, 李风亭. UiO-66(Zr)@多孔陶瓷复合材料的制备及对络合态重金属EDTA-Cu(Ⅱ)的去除[J]. 环境化学, 2020, (3): 677-686. doi: 10.7524/j.issn.0254-6108.2019103108
引用本文: 陈倩, 吴一楠, 蒋天遥, 张彦星, 郑璐, 李风亭. UiO-66(Zr)@多孔陶瓷复合材料的制备及对络合态重金属EDTA-Cu(Ⅱ)的去除[J]. 环境化学, 2020, (3): 677-686. doi: 10.7524/j.issn.0254-6108.2019103108
CHEN Qian, WU Yinan, JIANG Tianyao, ZHANG Yanxing, ZHENG Lu, LI Fengting. Synthesis of UiO-66(Zr)@porous ceramic composite for the removal of EDTA-Cu(Ⅱ) complex[J]. Environmental Chemistry, 2020, (3): 677-686. doi: 10.7524/j.issn.0254-6108.2019103108
Citation: CHEN Qian, WU Yinan, JIANG Tianyao, ZHANG Yanxing, ZHENG Lu, LI Fengting. Synthesis of UiO-66(Zr)@porous ceramic composite for the removal of EDTA-Cu(Ⅱ) complex[J]. Environmental Chemistry, 2020, (3): 677-686. doi: 10.7524/j.issn.0254-6108.2019103108

UiO-66(Zr)@多孔陶瓷复合材料的制备及对络合态重金属EDTA-Cu(Ⅱ)的去除

    通讯作者: 吴一楠, E-mail: 51n@tongji.edu.cn
  • 基金项目:

    国家自然科学基金(21777119)和上海市科委"一带一路"国际合作项目(18230742300)资助.

Synthesis of UiO-66(Zr)@porous ceramic composite for the removal of EDTA-Cu(Ⅱ) complex

    Corresponding author: WU Yinan, 51n@tongji.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(21777119)and the Science and Technology Commission of Shanghai Municipality "The Belt and Road Initiative" Program(18230742300).
  • 摘要: 本文采用多孔陶瓷作为基体制备了锆基金属有机骨架UiO-66@多孔陶瓷复合材料.通过扫描电子显微镜(SEM)、粉末X射线衍射(PXRD)、氮气吸附和傅里叶变换红外光谱(FTIR)等表征手段对比了氢氧化钠脱硅和乙二胺表面改性等基体活化方式对UiO-66(Zr)在多孔陶瓷表面负载情况的影响.结果表明,经过乙二胺表面改性的多孔陶瓷对UiO-66(Zr)的负载更均匀,负载效果更好.以EDTA-Cu(Ⅱ)为考察对象,研究了UiO-66(Zr)@乙二胺表面改性多孔陶瓷复合材料对络合态重金属的净化效能.结果表明,UiO-66(Zr)@多孔陶瓷复合材料在较宽的酸碱条件下(pH=3-9)对络合态重金属EDTA-Cu(Ⅱ)均表现出良好的吸附性能,饱和吸附量为1.17 mg·g-1,并可通过NaOH解吸再生,从而实现材料的重复利用.
  • 加载中
  • [1] MUCHUWETI M, BIRKETT J W, CHINYANGA E, et al. Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe:Implications for human health[J]. Agriculture Ecosystems & Environment, 2006, 112(1):41-48.
    [2] 谢丽萍, 付丰连, 汤兵. 络合重金属废水处理的研究进展[J]. 工业水处理, 2012, 32(8):1-4.

    XIE L P, FU F L, TANG B. Research progress in the treatment of complex heavy metal wastewater[J]. Industrial Water Treatment, 2012, 32(8):1-4(in Chinese).

    [3] WONG S, YAC'COB N A N, NGADI N, et al. From pollutant to solution of wastewater pollution:Synthesis of activated carbon from textile sludge for dye adsorption[J]. Chinese Journal of Chemical Engineering, 2018, 26(4):870-878.
    [4] HU Y N, WANG H Y, CAO G P, et al. The adsorption of toluenediamine from the wastewater by activated carbon in batch and fixed bed systems[J]. Desalination, 2011, 279(1):54-60.
    [5] KHAN N A, IBRAHIM S, SUBRAMANIAM P. Elimination of heavy metals from wastewater using agricultural wastes as adsorbents[J]. Malaysian Journal of Science, 2004, 23(1):43-51.
    [6] GEORGE A T, LUÍS A M R. Heavy metal removal from simulated wastewater using electrochemical technology:Optimization of copper electrodeposition in a membraneless fluidized bed electrode[J]. Clean Technologies & Environmental Policy, 2016, 19(2):1-13.
    [7] NAJAFPOOR A A, DAVOUDI M, SALMANI E R. Optimization of copper removal from aqueous solutions in a continuous electrochemical cell divided by cellulosic separator[J]. Water Science & Technology, 2017, 75(5-6):1233-1242.
    [8] 曹海峰. 络合态重金属废水处理技术研究进展[J]. 工业水处理, 2015, 35(11):14-17.

    CAO H F. Research progress in the technologies for the treatment of wastewater containing complexed heavy metal[J]. Industrial Water Treatment, 2015, 35(11):14-17(in Chinese).

    [9] EDDAOUDI M, LI H, YAGHI O M. Highly porous and stable metal-organic frameworks:Structure design and sorption properties[J]. Journal of the American Chemical Society, 2000, 122(7):1391-1397.
    [10] EDDAOUDI M, MOLER D B, LI H, et al. Modular chemistry:Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks[J]. Accounts of Chemical Research, 2001, 34(4):319-330.
    [11] JIANG H L, FENG D, LIU T F, et al. Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks[J]. Journal of the American Chemical Society, 2012, 134(36):14690-14693.
    [12] REBOUL J, FURUKAWA S, HORIKE N, et al. Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication[J]. Nature Materials, 2012, 11(8):717-723.
    [13] DENG H, GRUNDER S, CORDOVA K E, et al. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336(6084):1018-1023.
    [14] SHEN K, ZHANG L, CHEN X, et al. Ordered macro-microporous metal-organic framework single crystals[J]. Science, 2018, 359(6372):206-210.
    [15] EDDAOUDI M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554):469-472.
    [16] LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5):1477-1504.
    [17] FURUKAWA H, KO N, GO Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990):424-428.
    [18] FÉREY, GÉRARD, SERRE C. Large breathing effects in three-dimensional porous hybrid matter:Facts, analyses, rules and consequences[J]. Chemical Society Reviews, 2009, 38(5):1380-1399.
    [19] EDDAOUDI M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554):469-472.
    [20] YAGHI O M, O'KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941):705-714.
    [21] TANABE K K, COHEN S M. Postsynthetic modification of metal-organic frameworks--a progress report[J].Chemical Society Reviews,2011, 40(2):498-519.
    [22] 童敏曼, 赵旭东, 解丽婷, 等. 金属-有机骨架材料用于废水处理[J]. 化学进展, 2012, 24(9):1646-1655.

    TONG M M, ZHAO X D, XIE L T, et al. Treatment of waste water using metal-organic frameworks[J]. Progress in Chemistry, 2012(9):1646-1655(in Chinese).

    [23] 李小娟, 何长发, 黄斌, 等. 金属有机骨架材料吸附去除环境污染物的进展[J]. 化工进展, 2016, 35(2):586-594.

    LI X J, HE C F, HUANG B, et al. Progress in the applications of metal-organic frameworks in adsorption removal of hazardous materials[J]. Progress in Chemistry, 2016, 35(2):586-594(in Chinese).

    [24] HORCAJADA P, CHALATI T, SERRE C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials, 2010, 9(2):172-178.
    [25] GASCON J, CORMA A, KAPTEIJN F, et al. Metal organic framework catalysis:Quo vadis?[J]. Acs Catalysis, 2014, 4(4):361-378.
    [26] ZORNOZA B, TELLEZ C, CORONAS J, et al. Metal organic framework based mixed matrix membranes:An increasingly important field of research with a large application potential[J]. Microporous & Mesoporous Materials, 2013, 166(2):67-78.
    [27] SHAH M, MCCARTHY M C, SACHDEVA S, et al. Current status of metal-organic framework membranes for gas separations:Promises and challenges[J]. Industrial & Engineering Chemistry Research, 2012, 51(5):2179-2199.
    [28] ZHOU Y C, XU X Y, WANG P, et al. Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite[J]. Chinese Journal of Catalysis, 2019, 40(12):1912-1923.
    [29] 王茀学, 王崇臣, 王鹏, 等. UiO系列金属-有机骨架的合成方法与应用[J]. 无机化学学报, 2017, 33(5):713-737.

    WANG F X, WANG C C, WANG P, et al. Syntheses and applications of UiO series of MOFs[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(5):713-737(in Chinese).

    [30] KANDIAH, MATHIVATHANI, NILSEN H, et al. Synthesis and stability of tagged UiO-66 Zr-MOFs[J]. Chemistry of Materials, 2010, 22(24):6632-6640.
    [31] VALENZANO L, CIVALLERI B, CHAVAN S, et al. Disclosing the complex structure of UiO-66 metal organic framework:A synergic combination of experiment and theory[J]. Chemistry of Materials, 2011, 23(7):1700-1718.
    [32] HOU S L, WU Y N, FENG L Y, et al. Green synthesis and evaluation of iron-based metal-organic framework MIL-88B for the efficient decontamination of arsenate from water[J]. Dalton Transactions, 2018, 47(7):2222-2231.
    [33] WU Y N, ZHOU M M, ZHANG B R, et al. Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal[J]. Nanoscale, 2013, 6(2):1105-1112.
    [34] WANG C, LIU X, CHEN J P, et al. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66[J]. Scientific Reports, 2015, 5:16613.
    [35] WU S, GE Y, WANG Y, et al. Adsorption of Cr(Ⅵ) on nano UiO-66-NH2 MOFs in water[J]. Environmental Technology, 2017, 39(15):1-40.
    [36] 韩易潼, 刘民, 李克艳, 等. 高稳定性金属有机骨架UiO-66的合成与应用[J]. 应用化学, 2016, 33(4):8-19.

    HAN Y T, LIU M, LI K Y, et al. Synthesis and application of high stability metal-organic framework UiO-66[J]. Chinese Journal of Applied Chemistry, 2016, 33(4):8-19(in Chinese).

    [37] 王慧, 曾令可, 张海文, 等. 多孔陶瓷——绿色功能材料[J]. 中国陶瓷, 2002, 38(3):6-8.

    WANG H, ZENG L K, ZHANG H W, et al. Porous ceramic--green functional materials[J]. China Ceramics, 2002, 38(3):6-8(in Chinese).

    [38] NETTLESHIP I. Applications of porous ceramics[J]. Key Engineering Materials, 1996, 122:305-324.
    [39] GREGOROVÁ E, Z. ŽIVCOVÁ, PABST W. Porosity and pore space characteristics of starch-processed porous ceramics[J]. Journal of Materials Science, 2006, 41(18):6119-6122.
    [40] 鞠银燕, 宋士华, 陈晓峰, 等. 多孔陶瓷的制备、应用及其研究进展[J]. 硅酸盐通报, 2007, 26(5):969-974.

    JU Y Y, SONG S H, CHEN X F, et al. The preparation, applications and research development of the porous ceramics[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(5):969-974(in Chinese).

    [41] 刘辉, 孙伟, 覃文庆, 等. 多孔陶瓷材料的应用及发展前景[J]. 矿冶工程, 2003, 23(6):69-71.

    LIU H, SUN W, TAN W Q, et al. Applications and prospects of porous ceramic material[J]. Mining and Metallurgical Engineering, 2003, 23(6):69-71(in Chinese).

    [42] HAMMEL E C, IGHODARO L R, OKOLI O I. Processing and properties of advanced porous ceramics:An application based review[J]. Ceramics International, 2014, 40(10):15351-15370.
    [43] 曾令可, 王慧, 罗民华. 多孔功能陶瓷制备与应用[M]. 北京:化学工业出版社, 2006. ZENG L K, WANG H, LUO M H. Synthesis and application of porous functional ceramics[M]. Beijing:Chemical Industry Press,2006(in Chinese).
    [44] KLAWITTER J J, HULBERT S F. Application of porous ceramics for the attachment of load bearing internal orthopedic applications[J]. Journal of Biomedical Materials Research Part A, 2010, 5(6):161-229.
    [45] UCHIDA A, NADE S M, MCCARTNEY E R, et al. The use of ceramics for bone replacement. A comparative study of three different porous ceramics[J]. Journal of Bone & Joint Surgery-british Volume, 1984, 66(2):269-275.
    [46] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42):13850-13851.
    [47] RAMSAHYE N A, GAO J, JOBIC H, et al. Adsorption and diffusion of light hydrocarbons in UiO-66(Zr):A combination of experimental and modeling tools[J]. The Journal of Physical Chemistry C, 2014, 118(47):27470-27482.
    [48] 杜峰, 李鹂. UiO-66(Zr)系列MOFs催化材料的制备及在乳酸乙酯合成中的应用[J]. 化工进展, 2015, 34(11):3938-3950.

    DU F, LI L. Preparation of UiO-66(Zr) MOFs and their application as catalysts for the synthesis of ethyl lactate[J]. Chemical Industry and Engineering Progress, 2015, 34(11):3938-3950(in Chinese).

    [49]
  • 加载中
计量
  • 文章访问数:  1912
  • HTML全文浏览数:  1912
  • PDF下载数:  50
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-31

UiO-66(Zr)@多孔陶瓷复合材料的制备及对络合态重金属EDTA-Cu(Ⅱ)的去除

    通讯作者: 吴一楠, E-mail: 51n@tongji.edu.cn
  • 1. 同济大学环境科学与工程学院, 污染控制与资源化研究国家重点实验室, 上海, 200092;
  • 2. 上海污染控制与生态安全研究院, 上海, 200092
基金项目:

国家自然科学基金(21777119)和上海市科委"一带一路"国际合作项目(18230742300)资助.

摘要: 本文采用多孔陶瓷作为基体制备了锆基金属有机骨架UiO-66@多孔陶瓷复合材料.通过扫描电子显微镜(SEM)、粉末X射线衍射(PXRD)、氮气吸附和傅里叶变换红外光谱(FTIR)等表征手段对比了氢氧化钠脱硅和乙二胺表面改性等基体活化方式对UiO-66(Zr)在多孔陶瓷表面负载情况的影响.结果表明,经过乙二胺表面改性的多孔陶瓷对UiO-66(Zr)的负载更均匀,负载效果更好.以EDTA-Cu(Ⅱ)为考察对象,研究了UiO-66(Zr)@乙二胺表面改性多孔陶瓷复合材料对络合态重金属的净化效能.结果表明,UiO-66(Zr)@多孔陶瓷复合材料在较宽的酸碱条件下(pH=3-9)对络合态重金属EDTA-Cu(Ⅱ)均表现出良好的吸附性能,饱和吸附量为1.17 mg·g-1,并可通过NaOH解吸再生,从而实现材料的重复利用.

English Abstract

参考文献 (49)

目录

/

返回文章
返回