龙凤山大气气溶胶散射特性观测分析

于大江, 宋庆利, 孙俊英, 刘建, 吴艳玲, 夏灿. 龙凤山大气气溶胶散射特性观测分析[J]. 环境化学, 2021, (3): 765-771. doi: 10.7524/j.issn.0254-6108.2019101003
引用本文: 于大江, 宋庆利, 孙俊英, 刘建, 吴艳玲, 夏灿. 龙凤山大气气溶胶散射特性观测分析[J]. 环境化学, 2021, (3): 765-771. doi: 10.7524/j.issn.0254-6108.2019101003
YU Dajiang, SONG Qingli, SUN Junying, LIU Jian, WU Yanling, XIA Can. Characteristics of aerosol scattering coefficient at Longfengshan regional background station[J]. Environmental Chemistry, 2021, (3): 765-771. doi: 10.7524/j.issn.0254-6108.2019101003
Citation: YU Dajiang, SONG Qingli, SUN Junying, LIU Jian, WU Yanling, XIA Can. Characteristics of aerosol scattering coefficient at Longfengshan regional background station[J]. Environmental Chemistry, 2021, (3): 765-771. doi: 10.7524/j.issn.0254-6108.2019101003

龙凤山大气气溶胶散射特性观测分析

    通讯作者: 宋庆利, E-mail: songqingli@yeah.net
  • 基金项目:

    国家自然科学基金(41675129)和中国气象局大气化学重点开放实验室开放课题(2017A02)资助.

Characteristics of aerosol scattering coefficient at Longfengshan regional background station

    Corresponding author: SONG Qingli, songqingli@yeah.net
  • Fund Project: Supported by the National Natural Science Foundation of China (41675129) and the Key Laboratory of Atmospheric Chemistry,China Meteorological Administration(2017A02).
  • 摘要: 利用2018年龙凤山区域大气本底站(简称龙凤山站)气溶胶散射系数、PM10质量浓度及常规气象观测资料,研究了东北本底地区气溶胶散射系数的变化特征.结果表明,2018年龙凤山站3个波长下气溶胶散射系数的均值为(194.1±202.4)Mm-1(450 nm)、(133.4±139.2)Mm-1(550 nm)、(81.8±85.3)Mm-1(700 nm).龙凤山地区散射系数具有明显的日变化特征,且不同季节的日变化特征具有较大区别.龙凤山地区地处相对洁净的背景地区,气溶胶散射系数水平相对较低,春季受局地及长距离风沙的影响散射系数均值较高,冬季东北地区采暖燃烧排放量比较大,大气层相对稳定,不利于气溶胶污染物的扩散,冬季气溶胶散射系数最高.夏秋季受湿沉降与植被条件的影响气溶胶散射系数最低.散射系数与PM10质量浓度相关性较好,相关系数r为0.82.龙凤山PM10的质量散射效率为3.6 m2·g-1(550 nm).2018年龙凤山PM10气溶胶的散射Angstrom指数(SAE)平均值为1.96±0.25,表明在观测期间气溶胶主要是以较小的粒子主导,夏季的SAE最大,秋季的SAE最低,春季和冬季居中.
  • 加载中
  • [1] CHARLSON R J, LANGNER J, RODHE H, et al. Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols[J]. Tellus, 1991, 43AB:152-163.
    [2] WANG P, CHE H Z, ZHANG X C, et al. Aerosol optical properties of regional background atmosphere in Northeast China[J]. Atmospheric Environment, 2010, 44(35):4404-4412.
    [3] 杨志峰. 中国特征区域大气气溶胶光学特性研究[D]. 北京:中国气象科学研究院,2008. YANG Z F, The aerosol optical characteristics in representative regions over China[D].Beijing:Chinese Academy of Meteorological Sciences, 2008(in Chinese).
    [4] CHE H Z, ZHAO H J, WU Y F, et al. Analyses of aerosol optical properties and direct radiative forcing over urban and industrial regions in Northeast China[J]. Meteorology and Atmospheric Physics, 2015, 127(3):345-354.
    [5] 宋建洋,郑向东,程兴宏,等.临安与龙凤山辐射数据质量及初步结果比较[J]. 应用气象学报,2013,24(1):65-74.

    SONG J Y, ZHENG X D, CHENG X H, et al. Quality evaluations and comparisons of radiation data at Lin'an and Longfengshan stations[J]. Journal of Applied Meteorological Science, 2013,24(1):65-74(in Chinese).

    [6] HEINTZENBERG J, CHARLSON R J. Design and applications of the integrating nephelometer:A review[J]. Journal of Atmospheric and Oceanic Technology, 1996, 13(5):987-1000.
    [7] 祁雪飞.华北地区大气气溶胶散射吸湿增长特性观测研究[D]. 北京:中国气象科学研究院, 2018. QI X F. Aerosol Hygroscopicity based on scattering measurements at a rural site of the North China Plain[D]. Beijing:Master Thesis of Chinese Academy of Meteorological Sciences, 2018(in Chinese).
    [8] 马楠,周秀骥,颜鹏,等. 一种改进的TSI3563积分浊度误差校正方法[J]. 应用气象学报, 2015, 26(1):12-21.

    MA N, ZHOU X J, YAN P, et al. A Modified method to correct the measurement error of TSI3563 integrating nephelometer[J]. Journal of Applied Meteorological Science, 2015, 26(1):12-21(in Chinese).

    [9] 许建明, 耿福海, 甄灿明, 等. 上海浦东地区气溶胶散射系数及影响因子[J]. 环境科学学报, 2010, 30(1):211-216.

    XU J M, GENG F H, ZHEN C M, et al. Aerosol scattering coefficients and the factors affecting them in Shanghai Pudong[J]. Acta Scientiae Circumstantiae, 2010, 30(1):211-216(in Chinese).

    [10] 岳建华,陶俊,林泽健,等. 成都春季生物质燃烧和沙尘期间气溶胶散射特征及其重建[J]. 环境科学,2012, 33(7):2151-2157.

    YUE J, TAO J, LIN Z J, et al. Characterization and reconstruction of aerosol light scattering coefficient at Chengdu during biomass burning and dust storm period in Spring[J]. Environmental Science, 2012, 33(7):2151-2157(in Chinese).

    [11] 苏晨,张小玲,刘强,等. 上甸子本底站气溶胶散射系数变化特征的初步分析[J]. 气候与环境研究, 2009,14(5):537-545.

    SU C, ZHANG X L, LIU Q, et al. Analysis of the characteristics of aerosol scattering coefficient at Shangdianzi background station[J]. Climatic and Environmental Research, 2009, 14(5):537-545(in Chinese).

    [12] XU J, BERGIN M H, YU X, et al. Measurement of aerosol chemical, physical and radiative properties in the Yangtze delta region of China[J]. Atmospheric Environment, 2002, 36:161-173.
    [13] 齐冰,杜荣光,徐宏辉,等. 杭州市区大气气溶胶散射特性观测分析[J]. 高原气象, 2014, 33(1):277-284.

    QI B, DU R G, XU H H, et al. An observational study on aerosol scattering properties in urban site of Hangzhou[J]. Plateau Meteorology, 2014, 33(1):277-284(in Chinese).

    [14] 彭艳梅,高磊,王舒,等.塔克拉玛干沙漠腹地气溶胶不同波段散射系数比较[J]. 沙漠与绿洲气象,2018, 12(3):26-32.

    PENG Y M, GAO L, WANG S, et al. Comparison of aerosol scattering coefficients of different wavebands in the hinterland of the Taklimakan Desert[J]. Desert and Oasis Meteorology, 2018, 12(3):26-32(in Chinese).

    [15] 姚青,蔡子颖,韩素琴,等. 天津冬季雾霾天气下颗粒物质量浓度分布与光学特性[J]. 环境科学研究,2014, 27(5):462-469.

    YAO Q, CAI Z Y, HAN S Q, et al. PM2.5 pollution characteristics and aerosol optical properties during fog-haze episodes in Tianjin[J]. Research of Environmental Sciences, 2014, 27(5):462-469(in Chinese).

    [16] BERGIN M H, GASS G R, XU J, et al. Aerosol radiative, physical, and chemical properties in Beijing during June 1999[J]. Journal of Geophysical Research, 2001, 106(D16):17969-17980.
    [17] 延昊,矫梅燕,赵琳娜,等. 中国北方气溶胶散射和PM10浓度特征[J]. 高原气象, 2008, 27(4):852-858.

    YAN H, JIAO M Y, ZHAO L N, et al. Characteristics of aerosol light-scattering and PM10 concentration in North China[J]. Plateau Meteorology, 2008, 27(4):852-858(in Chinese).

    [18] PEREIRA S, WAGNER F, SILVA A M. Scattering properties and mass concentration of local and long-range transported aerosols over the south western Iberia peninsula[J]. Atmospheric Environment, 2008, 42(33):7623-7631.
  • 加载中
计量
  • 文章访问数:  1257
  • HTML全文浏览数:  1257
  • PDF下载数:  29
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-10

龙凤山大气气溶胶散射特性观测分析

    通讯作者: 宋庆利, E-mail: songqingli@yeah.net
  • 1. 龙凤山区域大气本底站, 五常, 150200;
  • 2. 中国气象科学研究院, 中国气象局大气化学重点开放实验室, 北京, 100081
基金项目:

国家自然科学基金(41675129)和中国气象局大气化学重点开放实验室开放课题(2017A02)资助.

摘要: 利用2018年龙凤山区域大气本底站(简称龙凤山站)气溶胶散射系数、PM10质量浓度及常规气象观测资料,研究了东北本底地区气溶胶散射系数的变化特征.结果表明,2018年龙凤山站3个波长下气溶胶散射系数的均值为(194.1±202.4)Mm-1(450 nm)、(133.4±139.2)Mm-1(550 nm)、(81.8±85.3)Mm-1(700 nm).龙凤山地区散射系数具有明显的日变化特征,且不同季节的日变化特征具有较大区别.龙凤山地区地处相对洁净的背景地区,气溶胶散射系数水平相对较低,春季受局地及长距离风沙的影响散射系数均值较高,冬季东北地区采暖燃烧排放量比较大,大气层相对稳定,不利于气溶胶污染物的扩散,冬季气溶胶散射系数最高.夏秋季受湿沉降与植被条件的影响气溶胶散射系数最低.散射系数与PM10质量浓度相关性较好,相关系数r为0.82.龙凤山PM10的质量散射效率为3.6 m2·g-1(550 nm).2018年龙凤山PM10气溶胶的散射Angstrom指数(SAE)平均值为1.96±0.25,表明在观测期间气溶胶主要是以较小的粒子主导,夏季的SAE最大,秋季的SAE最低,春季和冬季居中.

English Abstract

参考文献 (18)

目录

/

返回文章
返回