TiO2-FeOOH/Mmt纳米复合材料的表面酸碱性质及光催化性能

刘子薇, 胡丽君, 孙振亚, 张翠, 方继敏. TiO2-FeOOH/Mmt纳米复合材料的表面酸碱性质及光催化性能[J]. 环境化学, 2020, (3): 745-754. doi: 10.7524/j.issn.0254-6108.2019092707
引用本文: 刘子薇, 胡丽君, 孙振亚, 张翠, 方继敏. TiO2-FeOOH/Mmt纳米复合材料的表面酸碱性质及光催化性能[J]. 环境化学, 2020, (3): 745-754. doi: 10.7524/j.issn.0254-6108.2019092707
LIU Ziwei, HU Lijun, SUN Zhenya, ZHANG Cui, FANG Jimin. The surface acidity and basicity and photocatalytic activity of TiO2-FeOOH/Mmt nanocomposites[J]. Environmental Chemistry, 2020, (3): 745-754. doi: 10.7524/j.issn.0254-6108.2019092707
Citation: LIU Ziwei, HU Lijun, SUN Zhenya, ZHANG Cui, FANG Jimin. The surface acidity and basicity and photocatalytic activity of TiO2-FeOOH/Mmt nanocomposites[J]. Environmental Chemistry, 2020, (3): 745-754. doi: 10.7524/j.issn.0254-6108.2019092707

TiO2-FeOOH/Mmt纳米复合材料的表面酸碱性质及光催化性能

    通讯作者: 孙振亚, E-mail: 653818799@qq.com
  • 基金项目:

    国家自然科学基金(41372054)资助.

The surface acidity and basicity and photocatalytic activity of TiO2-FeOOH/Mmt nanocomposites

    Corresponding author: SUN Zhenya, 653818799@qq.com
  • Fund Project: Supported by the National Natural Foundation of China (41372054).
  • 摘要: 本研究以蒙脱石(Mmt)为基底材料,利用自组装制备技术得到TiO2-FeOOH/Mmt纳米复合材料,以亚甲基蓝为降解目标物,研究复合材料光催化降解性能.利用透射电子显微镜(TEM)、比表面积及孔隙分析仪(BET)和紫外-可见分光光度计(UV-Vis)对制备材料进行表征分析,结果表明由针铁矿和锐钛矿组成的复合材料带隙宽度减小且光响应范围得到拓宽.着重通过表面酸碱滴定实验,结合ProtoFit表面络合模型模拟软件,对光催化前后材料表面酸碱性质变化情况进行了分析,发现复合材料的lgKa值并非单层材料的简单叠加,而是复合后发生了一定的表面化学作用形成新的表面酸碱性质.复合材料具有更大的表面位密度Nt及表面化合态≡XOH含量,能使材料在表面反应过程中提供更多的表面活性物质,产生更多的自由基,间接加快目标物降解速度.且复合材料铁循环强度更大,该循环能有利反应过程中电子的转移,并维持材料表面活性.这为后期进一步研究纳米复合材料光催化降解机理提供理论依据.
  • 加载中
  • [1] TAHIR M, AMIN N A S. Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites[J]. Applied Catalysis B:Environmental, 2013, 142-143:512-522.
    [2] LIANG H, WANG Z, LIAO L, et al. High performance photocatalysts:Montmorillonite supported-nano TiO2 composites[J].Optik, 2017, 136:44-51.
    [3] STUMM W, HOHL H, DALANG F. Interaction of metal ions with hydrous oxide surfaces[J].Croatica Chemica Acta, 1976, 48:491-504.
    [4] SENGUPTA T, YATES M, PAPADOPOULOS K D. Metal complexation with surface-active Kemp's triacid[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 1999, 148(3):259-270.
    [5] 吴震生. 纳米Fe2O3和Mn2O3及其混合物表面酸碱性质和吸附行为[D].济南:济南大学, 2010. WU Z S.Surface acidity and alkalinity and adsorption behavior of nano-Fe2O3 and Mn2

    O3 and their mixtures[D]. Jinan:Jinan University, 2010(in Chinese).

    [6] STACHOWICZ M, HIEMSTRA T, RIEMSDIJK W. Multi-competitive interactin of As(III) and As(V) oxyanions with Ca2+, Mg2+, and CO32- ions on goethite[J]. J. Colloid Interface Sci, 2008, 320:400-414.
    [7] STOLZE L, ZHANG D, GUO H, et al. Surface complexation modeling of arsenic mobilization from goethite:Interpretation of an in-situ experiment[J].Geochimica et Cosmochimica Acta, 2019, 248:274-288.
    [8] BONTEN L T C, GROENENBERG J E, MEESENBURG H, et al. Using advanced surface complexation models for modelling soil chemistry under forests:Solling forest, Germany[J]. Environmental Pollution, 2011, 159(10):2831-2839.
    [9] PAYNE T E, DAVIS J A, LUMPLIN G R, et al. Surface complexation model of uranyl sorption on Georgia kaolinite[J]. Applied Clay Science, 2004, 26(1-4):151-162.
    [10] VESELSKA V, FAJGAR R, ČIHALOVA S, et al. Chromate adsorption on selected soil minerals:Surface complexation modeling coupled with spectroscopic investigation[J].Journal of Hazardous Materials, 2016, 318:433-442.
    [11] 王震. 新型可见光催化剂的制备及其性能研究[D].杭州:浙江大学,2014. WANG Z. Preparation and properties of novel visible catalyst[D].Hangzhou:Zhejiang University,2014(in Chinese).
    [12] 谢裕兴, 孙振亚, 李涵, 等. 石英基多层纳米TiO2-FeOOH复合材料的制备和显微结构的表征[J]. 电子显微学报, 2017, 36(3):207-213.

    XIE Y X,SUN Z Y,LI H,et al.Preparation and characterization of microstructure of quartz-based multilayer nano TiO2-FeOOH composites[J].Journal of Electron Microscopy,2017, 36(3):207-213(in Chinese).

    [13] SUN Z Y, HE X, DU J, et al. Synergistic effect of photocatalysis and adsorption of nano-TiO2 self-assembled onto sulfanyl/activated carbon composite[J]. Environmental Science & Pollution Research International, 2016, 23(21):1-8.
    [14] 吴大清, 刁桂仪, 彭金莲. 高岭石等粘土矿物对五氯苯酚的吸附及其与矿物表面化合态关系[J]. 地球化学, 2003, 32(5):501-505.

    WU D Q,DIAO G Y,PENG J L.Adsorption of pentachlorophenol by clay minerals such as kaolinite and its relationship with mineral surface[J].Geochemistry, 2003, 32(5):501-505(in Chinese).

    [15] CHEN D, HU S J, LI G H. Preparation and photocatalytic activity of TiO2/FeOOH nanocomposite[J]. Advanced Materials Research, 2012, 535-537:219-222.
    [16] ETACHERI V, SEERY M K, HINDER S J, et al. Nanostructured Ti1-xSxO2-yNy Heterojunctions for efficient visible-light-induced photocatalysis[J]. Inorganic Chemistry, 2012, 51(13):7164-7173.
    [17] HUANG C L, ZHANG H Y, SUN Z Y, et al. Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane[J]. Science China Chemistry, 2010, 53(7):1502-1508.
    [18] 王徐越, 孙振亚, 谢裕兴, 等. "光催化铁循环"作用对自组装TiO2-FeOOH复合膜活性的影响[J].环境化学, 2018, 37(11):2555-2564.

    WANG X Y,SUN Z Y,XIE Y X, et al.Effect of "photocatalytic iron cycle" on the activity of self-assembled TiO2-FeOOH composite membrane[J].Environmental Chemistry, 2018, 37(11):2555-2564(in Chinese).

    [19] 魏俊峰, 吴大清. 高岭石表面的酸碱性质[J]. 矿物学报, 2002, 22(3):207-210.

    WEI J F,WU D Q.Acid and alkali on the surface of kaolinite[J].Journal of Mineralogy, 2002, 22(3):207-210(in Chinese).

    [20] 刘嘉. α-Fe2O3γ-Al2O3、SiO2纳米粒子单一及其混合体系的界面化学行为[D].济南:济南大学, 2010. LIU J.Interfacial Chemical Behavior of α-Fe2O3γ-Al2

    O3、SiO2 nanoparticles and their mixed systems[D].Jinan:Jinan University, 2010(in Chinese).

    [21] DUC M, ADEKOLA F, LEFEVRE G, et al. Influence of kinetics on the determination of the surface reactivity of oxide suspensions by acid-base titration[J]. Journal of Colloid & Interface Science, 2006, 303(1):49-55.
    [22] HAN J, KATZ L E. Capturing the variable reactivity of goethites in surface complexation modeling by correlating model parameters with specific surface area[J]. Geochimica et Cosmochimica Acta, 2018, 224:248-263.
    [23] ROZSA G, SZABO L, SCHRANTZ K, et al. Mechanistic study on thiacloprid transformation:Free radical reactions[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 343:17-25.
  • 加载中
计量
  • 文章访问数:  1590
  • HTML全文浏览数:  1590
  • PDF下载数:  31
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-27

TiO2-FeOOH/Mmt纳米复合材料的表面酸碱性质及光催化性能

    通讯作者: 孙振亚, E-mail: 653818799@qq.com
  • 1. 武汉理工大学资源与环境工程学院, 武汉, 430070;
  • 2. 武汉理工大学材料研究与测试中心, 武汉, 430070
基金项目:

国家自然科学基金(41372054)资助.

摘要: 本研究以蒙脱石(Mmt)为基底材料,利用自组装制备技术得到TiO2-FeOOH/Mmt纳米复合材料,以亚甲基蓝为降解目标物,研究复合材料光催化降解性能.利用透射电子显微镜(TEM)、比表面积及孔隙分析仪(BET)和紫外-可见分光光度计(UV-Vis)对制备材料进行表征分析,结果表明由针铁矿和锐钛矿组成的复合材料带隙宽度减小且光响应范围得到拓宽.着重通过表面酸碱滴定实验,结合ProtoFit表面络合模型模拟软件,对光催化前后材料表面酸碱性质变化情况进行了分析,发现复合材料的lgKa值并非单层材料的简单叠加,而是复合后发生了一定的表面化学作用形成新的表面酸碱性质.复合材料具有更大的表面位密度Nt及表面化合态≡XOH含量,能使材料在表面反应过程中提供更多的表面活性物质,产生更多的自由基,间接加快目标物降解速度.且复合材料铁循环强度更大,该循环能有利反应过程中电子的转移,并维持材料表面活性.这为后期进一步研究纳米复合材料光催化降解机理提供理论依据.

English Abstract

参考文献 (23)

目录

/

返回文章
返回