涨落潮影响下长江口PAHs水-悬沙相间分配特征

于晓霞, 吴悦菡, 王东鑫, 田晨浩, 冯成洪. 涨落潮影响下长江口PAHs水-悬沙相间分配特征[J]. 环境化学, 2020, (10): 2840-2848. doi: 10.7524/j.issn.0254-6108.2019072905
引用本文: 于晓霞, 吴悦菡, 王东鑫, 田晨浩, 冯成洪. 涨落潮影响下长江口PAHs水-悬沙相间分配特征[J]. 环境化学, 2020, (10): 2840-2848. doi: 10.7524/j.issn.0254-6108.2019072905
YU Xiaoxia, WU Yuehan, WANG Dongxin, TIAN Chenhao, FENG Chenghong. Multiphase distribution of polycyclic aromatic hydrocarbons (PAHs) in Yangtze Estuary under the impacts of ebb and flow[J]. Environmental Chemistry, 2020, (10): 2840-2848. doi: 10.7524/j.issn.0254-6108.2019072905
Citation: YU Xiaoxia, WU Yuehan, WANG Dongxin, TIAN Chenhao, FENG Chenghong. Multiphase distribution of polycyclic aromatic hydrocarbons (PAHs) in Yangtze Estuary under the impacts of ebb and flow[J]. Environmental Chemistry, 2020, (10): 2840-2848. doi: 10.7524/j.issn.0254-6108.2019072905

涨落潮影响下长江口PAHs水-悬沙相间分配特征

    通讯作者: 冯成洪, E-mail: fengchenghong@bnu.edu.cn
  • 基金项目:

    国家自然科学基金(21677017)和环保公益专项(201409040)资助.

Multiphase distribution of polycyclic aromatic hydrocarbons (PAHs) in Yangtze Estuary under the impacts of ebb and flow

    Corresponding author: FENG Chenghong, fengchenghong@bnu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21677017)and the Nonprofit Environment Protection Specific Project of China (201409040).
  • 摘要: 通过长江口水体、悬沙中16种PAHs总体与单体含量特征采样分析,探讨涨落潮影响下PAHs的多相分配特征,并结合PAHs多相分配系数揭示其归趋行为.结果表明,涨落潮对不同环数PAHs的分配影响差异较大.DOC、水流对水相中溶解态PAHs含量分布影响较大,悬沙理化性质对于悬沙中结合态PAHs影响更大.低环PAHs主要以溶解相迁移,而高环PAHs则以颗粒相迁移.沉积物多次再悬浮能够降低水中溶解态PAHs含量,抑制沉积物中结合态PAHs释放.在涨落潮影响下和沉积物再悬浮过程中16种PAHs的lgKd大小次序均呈现一致性,即5,6环PAHs > 4环PAHs > 2,3环PAHs.在水-悬沙相间分配过程中,多环芳烃自身理化性质起主导作用,盐度、沉积物组成、水动力强度、水流速大小等因素也共同影响长江口PAHs多相分配作用.
  • 加载中
  • [1] LI B H, FENG C H, XUE L, et al. Spatial distribution and source apportionment of PAHs in surficial sediments of the Yangtze Estuary, China[J]. Marine Pollution Bulletin, 2012, 64(3):636-643.
    [2] 冯成洪, 李宝华, 李雪, 等. 不同水文特征下长江口沉积物中多环芳烃时空分布特征[C]. 中国环境科学学会学术年会, 2012. FENG C H, LI B H, LI X, et al. Spatial-temporal distribution of PAHs in sediments in the Yangtze estuary under different hydrological characteristics[C]. Annual Meeting of Chinese Society for Environmental Sciences, 2012(in Chinese).
    [3] 尹肃, 冯成洪, 李扬飏,等. 长江口沉积物重金属赋存形态及风险特征[J]. 环境科学, 2016, 37(3):917-924.

    YIN S, FENG C H, LI Y B, et al. Occurrence patterns and risk characteristics of heavy metals in sediments of the Yangtze Estuary[J]. Environmental Science, 2016, 37(3):917-924(in Chinese).

    [4] LIU M, BAUGH P J, HUTCHINSON S M, et al. Historical record and sources of polycyclic aromatic hydrocarbons in core sediments from the Yangtze Estuary, China[J]. Environmental Pollution, 2000, 110(2):357-365.
    [5] FENG J, YANG Z, NIU J, et al. Remobilization of polycyclic aromatic hydrocarbons during the resuspension of Yangtze River sediments using a particle entrainment simulator[J]. Environmental Pollution, 2007, 149(2):193-200.
    [6] EGGLETON J, THOMAS K V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events[J]. Environment International, 2004, 30(7):973-980.
    [7] 王华新, 线薇微. 长江口表层沉积物有机碳分布及其影响因素[J]. 海洋科学, 2011, 35(5):24-31.

    WANG X H, XIAN W W. Distribution and influencing factors of organic carbon in surface sediments of the Yangtze Estuary[J]. Marine Science, 2011, 35(5):24-31(in Chinese).

    [8] 刘高峰, 沈焕庭, 吴加学,等. 河口涨落潮槽水动力特征及河槽类型判定[J]. 海洋学报, 2005, 27(5):151-156.

    LIU G F, SHEN H T, WU J X, et al. Hydrodynamic characteristics and channel type determination of tidal flume in estuaries[J]. Journal of Oceanography,2005,27(5):151-156(in Chinese).

    [9] 毕世普. 三峡工程截流后长江口海区表层悬沙分布与河口锋带特征[D]. 青岛:中国科学院海洋研究所, 2009. BI S P. Distribution of surface suspended sediment and characteristics of estuary front zone in the Yangtze Estuary after closure of the Three Gorges Project[D]. Qingdao:Institute of Oceanography, Chinese Academy of Sciences, 2009(in Chinese).
    [10] 王永红. 长江河口涨潮槽的形成机理与动力沉积特征[D]. 上海:华东师范大学, 2003. WANG Y H. Formation mechanism and dynamic sedimentary characteristics of flood trough in the Yangtze Estuary[D]. Shanghai:East China Normal University, 2003(in Chinese).
    [11] LATIMER J S, DAVIS W R, KEITH D J. Mobilization of PAHs and PCBs from in-place contaminated marine sediments during simulated resuspension events[J]. Estuarine Coastal & Shelf Science, 1999, 49(4):577-595.
    [12] ZHAO S, FENG C, WANG D, et al. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary:Relative role of sediments' properties and metal speciation[J]. Chemosphere, 2013, 91(7):977-984.
    [13] BRETT K. BRUNK, GERHARD H. JIRKA A, LEONARD W. LION. Effects of salinity changes and the formation of dissolved organic matter coatings on the sorption of phenanthrene:Implications for pollutant trapping in estuaries[J]. Environmental Science & Technology, 1997, 31(1):119-125.
    [14] WANG Z L, LIU C Q. Distribution and partition behavior of heavy metals between dissolved and acid-soluble fractions along a salinity gradient in the Changjiang Estuary, eastern China[J]. Chemical Geology, 2003, 202(3):383-396.
    [15] NAUDIN J J, CAUWET G, CHR TIENNOT-DINET M J, et al. River discharge and wind influence upon particulate transfer at the land-ocean interaction:case study of the rhone river plume[J]. Estuarine Coastal & Shelf Science, 1997, 45(3):303-316.
    [16] 孟翊, 程江. 长江口北支入海河段的衰退机制[J]. 海洋地质前沿, 2005, 21(1):1-10.

    Meng Y, CHENG J. Decline mechanism of the northern branch of the Yangtze Estuary into the Haihe River[J]. Marine Geological Frontier, 2005, 21(1):1-10(in Chinese).

    [17] 张钊. 长江口南槽悬沙输运涨落潮不对称研究[D]. 上海:华东师范大学, 2017. ZHANG Z. Study on the asymmetry of fluctuation and fluctuation tides of suspended sediment transport in the south channel of the Yangtze Estuary[D]. Shanghai:East China Normal University, 2017(in Chinese).
    [18] 朱建荣, 吴辉, 顾玉亮,等. 长江河口北支倒灌盐通量数值分析[J]. 海洋学研究, 2011, 29(3):1-7.

    ZHU J R, WU H, GU Y L, et al. Numerical analysis of salt flux of upstream irrigation in the North Branch of the Yangtze Estuary[J]. Oceanographic Studies, 2011, 29(3):1-7(in Chinese).

    [19] 冯精兰, 牛军峰. 长江武汉段不同粒径沉积物中多环芳烃(PAHs)分布特征[J]. 环境科学, 2007, 28(7):1573-1577.

    FENG J L, NIU J F. Distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in sediments of different grain sizes in Wuhan section of the Yangtze River[J]. Environmental Science, 2007, 28(7):1573-1577(in Chinese).

    [20] AMELLAL N, PORTAL J M, BERTHELIN J. Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of a contaminated soil[J]. Applied Geochemistry, 2002, 16(14):1611-1619.
    [21] YANG Z, FENG J, NIU J, et al. Release of polycyclic aromatic hydrocarbons from Yangtze River sediment cores during periods of simulated resuspension[J]. Environmental Pollution, 2008, 155(2):366-374.
    [22] 何葵, 谢远云, 张丽娟,等. 哈尔滨2002年3月20日沙尘暴沉降物的粒度特征及其意义[J]. 地理科学, 2005, 25(5):597-600.

    HE K, XIE Y Y, ZHANG L J, et al. Particle size characteristics and significance of dust storm sediments in Harbin on March 20, 2002[J]. Geographic Science, 2005, 25(5):597-600(in Chinese).

    [23] NIU J, CHEN J, MARTENS D, et al. Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce[Picea abies (L) Karst] needles under sunlight irradiation[J]. Environmental Pollution, 2003, 123(1):39-45.
    [24] TSAI C H, LICK W. A portable Device for measuring sediment resuspension[J]. Journal of Great Lakes Research, 1986, 12(4):314-321.
    [25] 王飞, 李九发, 李占海, 等. 长江口南槽河道水沙特性及河床沙再悬浮研究[J]. 人民长江, 2014, 45(13):9-14.

    WANG F, LI J F, LI Z M, et al. Study on the characteristics of water and sediment and resuspension of bed sand in the South Channel of the Yangtze Estuary[J]. People's Yangtze River, 2014, 45(13):9-14(in Chinese).

    [26] KOMADA T, REIMERS C E. Resuspension-induced partitioning of organic carbon between solid and solution phases from a river-ocean transition[J]. Marine Chemistry, 2001, 76(3):155-174.
    [27] DOLL T E, FRIMMEL F H, KUMKE M U, et al. Interaction between natural organic matter (NOM) and polycyclic aromatic compounds (PAC)-comparison of fluorescence quenching and solid phase micro extraction (SPME)[J]. Fresenius Journal of Analytical Chemistry, 1999, 364(4):313-319.
    [28] ROCKNE K J, SHOR L M, YOUNG L Y, et al. Distributed sequestration and release of PAHs in weathered sediment:The role of sediment structure and organic carbon properties[J]. Environmental Science & Technology, 2015, 36(12):2636-2644.
    [29] 胡静, 陈沈良, 谷国传, 等. 长江河口水沙分流和输移的探讨[J]. 海岸工程, 2007, 26(2):1-10.

    HU J, CHEN S L, GU G Z, et al. Discussion on distribution and transport of water and sediment in the Yangze Estuary[J]. Coastal Enguneering, 2007, 26(2):1-10(in Chinese).

    [30] CASEY W H, Chemistry of the solid water interface-processes at the mineral water and particle water interface in natural systems[J]. Stumm W, 1993, 363(6426):222.
    [31] 李伯昌, 余文畴, 陈鹏, 等. 长江口北支近期水流泥沙输移及含盐度的变化特性[J]. 水资源保护, 2011, 27(4):31-34.

    LI B C, YU W C, CHEN P, et al. Recent sediment transport and salinity variation characteristics of the northern branch of the Yangtze Estuary[J]. Water Resources Protection, 2011, 27(4):31-34(in Chinese).

    [32] 姚弘毅, 李九发, 戴志军, 等. 长江河口北港河道泥沙特性及河床沙再悬浮研究[J]. 泥沙研究, 2013(3):6-13. YAO H Y, LI J F, DAI Z J, et al. Study on Sediment characteristics and resuspension of beigang channel in the Yangtze Estuary[J]. Sediment Research, 2013

    (3):6-13(in Chinese).

    [33] 李竺. 多环芳烃在黄浦江水体的分布特征及吸附机理研究[D]. 上海:同济大学, 2007. LI Z. Distribution characteristics and adsorption mechanism of polycyclic aromatic hydrocarbons in Huangpu River waters[D]. Shanghai:Tongji University, 2007(in Chiniese).
    [34] 王成龙. 长江流域-河口-近海环境中多环芳烃分布特征及影响因素研究[D]. 南京:南京大学, 2017. WANG C L. Distribution characteristics and influencing factors of polycyclic aromatic hydrocarbons (PAHs) in the Yangtze River basin-estuary-offshore environment[D]. Nanjing:Nanjing University, 2017(in Chinese).
    [35]
    [36] CHEN B, XUAN X, ZHU L, et al. Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China[J]. Water Research, 2004, 38(16):3558-3568.
    [37] 彭欢, 杨毅, 刘敏, 等. 淮南-蚌埠段淮河流域沉积物中PAHs的分布及来源辨析[J]. 环境科学, 2010, 31(5):1192-1197.

    PENG H, YANG Y, LIU M,et al. Analysis of PAHs distribution and source in huai river basin sediments in huainan-bengbu section[J]. Environmental Science, 2010, 31(5):1192-1197(in Chinese).

    [38] 张晨晨, 高建华, 郭俊丽, 等. 长江口及废黄河口海域表层沉积物中多环芳烃分布特征和生态风险评价[J]. 海洋通报, 2018, 37(1):38-44.

    ZHANG C C, GAO J H, GUO J L, et al. Distribution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Yangtze River Estuary and the abandoned Yellow River Estuary[J]. Marine Bulletin, 2018, 37(1):38-44(in Chinese).

    [39] GAIERO D M, PROBST J L, DEPETRIS P J, et al. Iron and other transition metals in Patagonian riverborne and windborne materials:Geochemical control and transport to the southern South Atlantic Ocean[J]. Geochimica Et Cosmochimica Acta, 2003, 67(19):3603-3623.
    [40] CHIOU C T, AND M G, KILE D E. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments[J]. Environmental Science & Technology Easton Pa, 1998, 32(2):264-269.
    [41] SCHRAP S M, HALLER M, OPPERHUIZEN A. Investigating the influence of incomplete separation of sediment and water on experimental sorption coefficients of chlorinated benzenes[J]. Environmental Toxicology & Chemistry, 2010, 14(2):219-228.
  • 加载中
计量
  • 文章访问数:  2049
  • HTML全文浏览数:  2049
  • PDF下载数:  99
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-07-29
于晓霞, 吴悦菡, 王东鑫, 田晨浩, 冯成洪. 涨落潮影响下长江口PAHs水-悬沙相间分配特征[J]. 环境化学, 2020, (10): 2840-2848. doi: 10.7524/j.issn.0254-6108.2019072905
引用本文: 于晓霞, 吴悦菡, 王东鑫, 田晨浩, 冯成洪. 涨落潮影响下长江口PAHs水-悬沙相间分配特征[J]. 环境化学, 2020, (10): 2840-2848. doi: 10.7524/j.issn.0254-6108.2019072905
YU Xiaoxia, WU Yuehan, WANG Dongxin, TIAN Chenhao, FENG Chenghong. Multiphase distribution of polycyclic aromatic hydrocarbons (PAHs) in Yangtze Estuary under the impacts of ebb and flow[J]. Environmental Chemistry, 2020, (10): 2840-2848. doi: 10.7524/j.issn.0254-6108.2019072905
Citation: YU Xiaoxia, WU Yuehan, WANG Dongxin, TIAN Chenhao, FENG Chenghong. Multiphase distribution of polycyclic aromatic hydrocarbons (PAHs) in Yangtze Estuary under the impacts of ebb and flow[J]. Environmental Chemistry, 2020, (10): 2840-2848. doi: 10.7524/j.issn.0254-6108.2019072905

涨落潮影响下长江口PAHs水-悬沙相间分配特征

    通讯作者: 冯成洪, E-mail: fengchenghong@bnu.edu.cn
  • 1. 山东省生态环境规划研究院, 济南, 250101;
  • 2. 北京师范大学环境学院水环境模拟国家重点实验室, 北京, 100875;
  • 3. 北京师范大学环境学院水沙科学教育部重点实验室, 北京, 100875
基金项目:

国家自然科学基金(21677017)和环保公益专项(201409040)资助.

摘要: 通过长江口水体、悬沙中16种PAHs总体与单体含量特征采样分析,探讨涨落潮影响下PAHs的多相分配特征,并结合PAHs多相分配系数揭示其归趋行为.结果表明,涨落潮对不同环数PAHs的分配影响差异较大.DOC、水流对水相中溶解态PAHs含量分布影响较大,悬沙理化性质对于悬沙中结合态PAHs影响更大.低环PAHs主要以溶解相迁移,而高环PAHs则以颗粒相迁移.沉积物多次再悬浮能够降低水中溶解态PAHs含量,抑制沉积物中结合态PAHs释放.在涨落潮影响下和沉积物再悬浮过程中16种PAHs的lgKd大小次序均呈现一致性,即5,6环PAHs > 4环PAHs > 2,3环PAHs.在水-悬沙相间分配过程中,多环芳烃自身理化性质起主导作用,盐度、沉积物组成、水动力强度、水流速大小等因素也共同影响长江口PAHs多相分配作用.

English Abstract

参考文献 (41)

返回顶部

目录

/

返回文章
返回