粘土岩对铀(Ⅵ)的吸附性能

赵玉婷, 潘跃龙, 刘羽, 冷阳春. 粘土岩对铀(Ⅵ)的吸附性能[J]. 环境化学, 2020, (8): 2279-2286. doi: 10.7524/j.issn.0254-6108.2019072502
引用本文: 赵玉婷, 潘跃龙, 刘羽, 冷阳春. 粘土岩对铀(Ⅵ)的吸附性能[J]. 环境化学, 2020, (8): 2279-2286. doi: 10.7524/j.issn.0254-6108.2019072502
ZHAO Yuting, PAN Yuelong, LIU Yu, LENG Yangchun. Adsorption mechanism of uranium(Ⅵ) by clay rock[J]. Environmental Chemistry, 2020, (8): 2279-2286. doi: 10.7524/j.issn.0254-6108.2019072502
Citation: ZHAO Yuting, PAN Yuelong, LIU Yu, LENG Yangchun. Adsorption mechanism of uranium(Ⅵ) by clay rock[J]. Environmental Chemistry, 2020, (8): 2279-2286. doi: 10.7524/j.issn.0254-6108.2019072502

粘土岩对铀(Ⅵ)的吸附性能

    通讯作者: 冷阳春, E-mail: leng_yc@swust.edu.cn
  • 基金项目:

    国家自然科学基金(41630646)和国家自然科学青年基金(41603124)资助.

Adsorption mechanism of uranium(Ⅵ) by clay rock

    Corresponding author: LENG Yangchun, leng_yc@swust.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41630646) and the National Natural Science Youth Fund (41603124).
  • 摘要: 以内蒙古阿拉善粘土岩为原料,采用静态吸附的方法,研究了不同因素对吸附铀(Ⅵ)效果的影响,通过吸附量和吸附率对结果进行分析.结果表明,粘土岩对铀(Ⅵ)的吸附效果较好,10 h就达到了平衡;在铀(Ⅵ)的最佳初始浓度为40 μg·mL-1时,吸附率达到最大;不同离子的影响不同,阳离子中,Mg2+的影响最大,Na+和K+几乎没影响,阴离子中,CO32-和HCO3-的影响最大,其次是SO42-,而NO3-基本没有影响;最佳固液比为1:40;吸附率和吸附量都随腐殖酸浓度的升高而减小;pH对吸附的影响较大,最佳pH值为6;吸附率和吸附量都随温度的升高而增大.Freundlich等温吸附模型较Langmuir能更好的拟合吸附过程.
  • 加载中
  • [1] MAO C L, LING B K, PENG Z, et al. Porous wood carbon monolith for high-performance supercapacitors[J]. Electrochimica Acta, 2012, 60:443-448.
    [2] 孟晋, 王洪明, 陈儒庆, 等.用离子交换法从某铀钼矿浸出液中回收与分离铀钼的研究[J].铀矿冶, 2008, 27(4):173-177.

    MENG J, WANG H M, CHEN R Q, et al. Study on recovery and separation of uranium and molybdenum from a uranium-molybdenum ore leaching solution by ion exchange method[J]. Uranium Mining and Metallurgy, 2008, 27(4):173-177(in Chinese).

    [3] 魏广芝, 徐乐昌.低浓度含铀废水的处理技术及其研究进展[J].铀矿冶, 2007, 26(2):90-95.

    WEIG Z, XU LC. Treatment technology and research progress of low concentration uranium containing wastewater[J]. Uranium Mining and Metallurgy, 2007, 26(2):90-95(in Chinese).

    [4] 朱宁波, 赵晓, 赵达慧.高分子铀吸附材料的研究进展[J].高分子通报, 2015(9):87-99. ZHU N B, ZHAO X, ZHAO D H. Research progress in polymeric uranium adsorbent materials[J]. Polymer Bulletin, 2015

    (9):87-99(in Chinese).

    [5] 刘泽萍, 刘海燕.吸附法从水体中去除铀的研究和发展[J].江西化工, 2019, (2):73-77. LIU Z P, LIU H Y. Research and development of removal of uranium from water by adsorption method[J]. Jiangxi Chemical Industry, 2019

    , (2):73-77(in Chinese).

    [6] WANG G H, WANG X G, CHAI X J, et al. Adsorption of uranium (Ⅵ) from aqueous solution on calcined and acid-activated kaolin[J]. Applied Clay Science, 2010, 47(3/4):448-451.
    [7] 黄彬, 陈泉水, 罗太安, 等.用改性膨润土吸附处理含铀(Ⅵ)废水试验研究[J].湿法冶金, 2018,37(2):128-134.

    HUANG B, CHEN Q S, LUO T A, et al. Experimental study on adsorption of uranium(Ⅵ)-containing wastewater by modified bentonite[J]. Journal of Hydrometallurgy, 2018, 37(2):128-134(in Chinese).

    [8] 崔瑞萍, 李义连, 景晨.伊利石对水溶液中低浓度铀的吸附[J].环境化学, 2015, 34(2):314-320.

    CUI R P, LI Y L, JING C. Adsorption of low concentration uranium in aqueous solution by illite[J]. Environmental Chemistry, 2015, 34(2):314-320(in Chinese).

    [9] 胡海洋.塔木素地区粘土岩吸附特性研究[J].甘肃科技, 2014, 30(17):51-52.

    HU H Y. Study on adsorption characteristics of clay rock in Tamusu Area[J]. Gansu Science and Technology, 2014, 30(17):51-52(in Chinese).

    [10] 马腾, 王焰新, 郝振纯.粘土对地下水中U(Ⅵ)的吸附作用及其污染控制研究[J].华东地质学院学报, 2001, 24(3):181-185.

    MA T, WANG Y X, HAO Z C. Study on the adsorption of U(Ⅵ) in groundwater by clay and its pollution control[J]. Journal of East China Geological Institute, 2001, 24(3):181-185(in Chinese).

    [11] 李华. 尾矿库中铀在粘土中的吸附及迁移规律研究[D].衡阳:南华大学, 2014. LI H. Adsorption and migration of uranium in clay in tailings pond[D]. Hengyang:Nanhua University, 2014(in Chinese).
    [12] 王长轩, 刘晓东, 刘平辉.高放废物地质处置库粘土岩场址研究现状[J].辐射防护, 2008(5):310-316. WANG C X, LIU X D, LIU P H. Research status of clay rock sites in geological disposal of high level radioactive waste[J]. Radiation Protection, 2008

    (5):310-316(in Chinese).

    [13] 杜作勇, 王彦惠, 李东瑞, 等.膨润土对U(Ⅵ)的吸附机理研究[J].核技术, 2019, 42(2):22-29.

    DU Z Y, WANG Y H, LI D R, et al. Study on the adsorption mechanism of bentonite for U(Ⅵ)[J]. Nuclear Techniques, 2019, 42(2):22-29(in Chinese).

    [14] WANG Z M, ZACHARA J M, BOILY J F, et al. Determining individual mineral contributions to U(Ⅵ) adsorption in a contaminated aquifer sediment:A fluorescence spectroscopy study[J]. Geochimica Et Cosmochimica Acta, 2011, 75(10):2965-2979.
    [15] 李小燕, 张明, 刘义保, 等.离子强度、阴阳离子和腐殖酸对纳米零价铁去除溶液中U(Ⅵ)的影响[J].中国有色金属学报, 2015, 25(12):3505-3512.

    LI X Y, ZHANG M, LIU Y B, et al.Effect of ionic strength, anion and cation and humic acid on U(Ⅵ) in nano-zero-valent iron removal solution[J]. The Chinese Journal of Nonferrous Metals,2015, 25(12):3505-3512(in Chinese).

    [16] 朱锐之, 李力力, 朱留超, 等.微陶材料对铀的吸附特性[J].核化学与放射化学, 2017, 39(5):377-384.

    ZHU R Z, LI L L, ZHU L C, et al. Adsorption characteristics of uranium by microceramic materials[J].Nuclear Chemistry and Radiochemistry, 2017, 39(5):377-384(in Chinese).

    [17] 童克展.氧化石墨烯/膨润土复合材料对废水中铀(Ⅵ)的吸附试验研究[D].衡阳:南华大学, 2018. TONG K Z. Adsorption of uranium(Ⅵ) in wastewater by graphene oxide/bentonite composites[D]. Hengyang:Nanhua University, 2018(in Chinese).
    [18] 肖益群, 夏良树, 李瑞瑞, 等.改性稻杆吸附U(Ⅵ)的行为和机理研究[J].原子能科学技术, 2015, 49(12):2130-2137.

    XIAO Y Q, XIA L S, LI R R, et al. Behavior and mechanism of adsorption of U(Ⅵ) on modified rice straw[J]. Atomic Energy Science and Technology, 2015, 49(12):2130-2137(in Chinese).

    [19] OCIŃSKI DANIEL, JACUKOWICZ-SOBALA I, KOCIOEK-BALAWEJDER E. Alginate beads containing water treatment residuals for arsenic removal from water-formation and adsorption studies[J]. Environmental Science and Pollution Research, 2016, 23(24):24527-24539.
  • 加载中
计量
  • 文章访问数:  1197
  • HTML全文浏览数:  1197
  • PDF下载数:  38
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-07-25

粘土岩对铀(Ⅵ)的吸附性能

    通讯作者: 冷阳春, E-mail: leng_yc@swust.edu.cn
  • 1. 西南科技大学国防科技学院, 绵阳, 621010;
  • 2. 中广核工程有限公司, 深圳, 518000
基金项目:

国家自然科学基金(41630646)和国家自然科学青年基金(41603124)资助.

摘要: 以内蒙古阿拉善粘土岩为原料,采用静态吸附的方法,研究了不同因素对吸附铀(Ⅵ)效果的影响,通过吸附量和吸附率对结果进行分析.结果表明,粘土岩对铀(Ⅵ)的吸附效果较好,10 h就达到了平衡;在铀(Ⅵ)的最佳初始浓度为40 μg·mL-1时,吸附率达到最大;不同离子的影响不同,阳离子中,Mg2+的影响最大,Na+和K+几乎没影响,阴离子中,CO32-和HCO3-的影响最大,其次是SO42-,而NO3-基本没有影响;最佳固液比为1:40;吸附率和吸附量都随腐殖酸浓度的升高而减小;pH对吸附的影响较大,最佳pH值为6;吸附率和吸附量都随温度的升高而增大.Freundlich等温吸附模型较Langmuir能更好的拟合吸附过程.

English Abstract

参考文献 (19)

目录

/

返回文章
返回