介孔Cu-Al2O3纳米纤维类芬顿氧化降解双酚A
Fenton-like oxidative degradation of bisphenol A by mesoporous Cu-Al2O3 nanofibers
-
摘要: 采用静电纺丝法制备了介孔Cu-Al2O3纳米纤维类芬顿催化剂,研究了其活化H2O2类芬顿氧化降解双酚A的过程与机制.通过在氧化铝纺丝前驱体中加入CuSO4,经静电纺丝及高温煅烧后制备了铜掺杂的介孔氧化铝纤维.通过SEM、BET、XRD和UV-vis DRS等方法表征可知:Cu-Al2O3纳米纤维直径约300 nm,具有介孔结构,比表面积为133.32 m2·g-1,物相为γ-Al2O3.实验探讨了H2O2添加量、催化剂投加量以及初始pH值等条件对双酚A(bisphenol A,BPA)降解过程的影响.实验表明:催化剂的最佳投加量为1.0 g·L-1,H2O2最佳添加量为24 mmol·L-1,反应最适宜pH值为中性,在最优的条件下1 h内对BPA(初始浓度20 mg·L-1)去除率可达到94.84%.通过电子自旋共振波谱分析以及自由基淬灭实验表明,该催化体系中产生的活性自由基分别为·OH、O2·-和1O2.Abstract: Mesoporous Cu-Al2O3 nanofibers were prepared by electrospinning and its Fenton-like catalytic performance for the oxidative degradation of bisphenol A in the presence of H2O2 was studied. By adding CuSO4 into the alumina precursor, and followed by electrostrospinning and calcination, mesoporous Cu-Al2O3 nanofibers were fabricated. The prepared mesoporous Cu-Al2O3 nanofibers were characterized by SEM, BET, XRD and UV-vis DRS, which indicated that Cu-Al2O3 nanofibers possessed a diameter of about 300 nm, a mesoporous structure, a specific surface area of 133.32 m2·g-1, and a phase of γ-Al2O3. The effects of H2O2 addition, catalyst addition and initial pH value on the degradation of bisphenol A were investigated. The experiments showed that the optimal addition amount of catalyst was 1.0 g·L-1, the optimal addition amount of H2O2 was 24 mmol·L-1, the optimal pH condition of the reaction was neutral, and the removal efficiency of BPA (initial concentration of 20 mg·L-1) within one hour under the optimal conditions could reach 94.84%. The electron spin resonance spectra analysis and free radical quenching experiments showed that the active radicals produced in the catalytic system were·OH, O2·- and 1O2.
-
Key words:
- electrospinning /
- Fenton-like oxidation /
- bisphenol A /
- alumina catalyst
-
-
[1] ZHAO G,JIANG L,HE Y, et al. Sulfonated graphene for persistent aromatic pollutant management[J]. Advanced Materials, 2011, 23(34):3959-3963. [2] WANG N,ZHU L,LEI M, et al. Ligand-induced drastic enhancement of catalytic activity of nano-BiFeO3 for oxidative degradation of bisphenol A[J]. ACS Catalysis, 2011, 1(10):1193-1202. [3] ZIA J,AJEER M,RIAZ U. Visible-light driven photocatalytic degradation of bisphenol-A using ultrasonically synthesized polypyrrole/K-birnessite nanohybrids:Experimental and DFT studies[J]. Journal of Environmental Sciences-China, 2019, 79:161-173. [4] SANCHEZ-POLO M,ABDEL DAIEM M M,OCAMPO-PEREZ R, et al. Comparative study of the photodegradation of bisphenol A by HO·, SO4-· and CO3-·/HCO3 radicals in aqueous phase[J]. Science of the Total Environment, 2013, 463:423-431. [5] NAVALON S,MARTIN R,ALVARO M, et al. Gold on diamond nanoparticles as a highly efficient Fenton catalyst[J]. Angewandte Chemie, 2010, 49(45):8403-8407. [6] KARTHIKEYAN S,GUPTA V K,BOOPATHY R, et al. A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation:Kinetic and spectroscopic studies[J]. Journal of Molecular Liquids, 2012, 173:153-163. [7] NAVALON S,DE MIGUEL M,MARTIN R, et al. Enhancement of the catalytic activity of supported gold nanoparticles for the Fenton reaction by light[J]. Journal of the American Chemical Society, 2011, 133(7):2218-2226. [8] HERMANEK M,ZBORIL R,MEDRIK I, et al. Catalytic efficiency of iron(Ⅲ) oxides in decomposition of hydrogen peroxide:Competition between the surface area and crystallinity of nanoparticles[J]. Journal of the American Chemical Society, 2007, 129(35):10929-10936. [9] YANG X J,XU X M,XU J, et al. Iron oxychloride (FeOCl):An Efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants[J]. Journal of the American Chemical Society, 2013, 135(43):16058-16061. [10] LING Y H,LONG M C,HU P D, et al. Magnetically separable core-shell structural gamma-Fe2O3@Cu/Al-MCM-41 nanocomposite and its performance in heterogeneous Fenton catalysis[J]. Journal of Hazardous Materials, 2014, 264:195-202. [11] WANG Y B,ZHAO H Y,ZHAO G H. Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants[J]. Applied Catalysis B:Environmental, 2015, 164:396-406. [12] 徐丹,张丽丽,柳丽芬. Cu-Al2O3中骨架铜类芬顿催化去除水中有机污染物[J]. 环境科学, 2017, 38(3):1054-1060. XU D,ZHANG L L,LIU L F. Fenton-like catalytic removal of organic pollutants in water by framework Cu in Cu-Al2O3[J].Environmental Science, 2017, 38(3):1054-1060(in Chinese).
[13] LYU L,ZHANG L L,WANG Q Y, et al. Enhanced fenton catalytic efficiency of gamma-Cu-Al2O3 by sigma-Cu2+-ligand complexes from aromatic pollutant degradation[J]. Environmental Science & Technology, 2015, 49(14):8639-8647. [14] DUKKANCI M,GUNDUZ G,YILMAZ S, et al. Heterogeneous Fenton-like degradation of rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis[J]. Journal of Hazardous Materials, 2010, 181:343-350. [15] WANG Y,LI W,JIAO X, et al. Electrospinning preparation and adsorption properties of mesoporous alumina fibers[J]. Journal of Materials Chemistry A, 2013, 1(36):10720-10726. [16] FU L,YANG H. Tailoring the electronic structure of mesoporous spinel gamma-Al2O3 at atomic level:Cu-Doped Case[J]. Journal of Physical Chemistry C, 2014, 118(26):14299-14315. [17] HUANG Z M,ZHANG Y Z,KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003, 63(15):2223-2253. [18] WANG Y,LI J,SUN J Y, et al. Electrospun flexible self-standing Cu-Al2O3 fibrous membranes as Fenton catalysts for bisphenol A degradation[J]. Journal of Materials Chemistry A, 2017, 5(36):19151-19158. [19] WANG Y,DING W,JIAO X, et al. Electrospun flexible self-standing silica/mesoporous alumina core-shell fibrous membranes as adsorbents toward Congo red[J]. RSC Advances, 2014, 4(58):30790-30797. [20] 苏扬帆,葛明桥. Mn/γ-Al2O3纳米颗粒催化双氧水降解水溶PVA废弃面料[J]. 浙江纺织服装职业技术学院学报, 2017, 16(4):8-16 ,32. SU M Y,GE M Q. Mn/γ-Al2O3 nanoparticles catalyze hydrogen peroxide degradation of water-soluble PVA waste fabrics[J]. Journal of Zhejiang Fashion Institute of Technology, 2017, 16(4):8-16,32(in Chinese).
[21] HSIEH M T,CHEN C T,WHANG T J. Triethanolamine-facilitated one-step electrodeposition of CuAlSe2 thin films and the mechanistic studies utilizing cyclic voltammetry[J]. Journal of Electroanalytical Chemistry, 2016, 762:73-79. [22] PEREZ-BENITO J F. Reaction pathways in the decomposition of hydrogen peroxide catalyzed by copper(Ⅱ)[J]. Journal of Inorganic Biochemistry, 2004, 98(3):430-438. [23] SOLER J,GARCIA-RIPOLL A,HAYEK N, et al. Effect of inorganic ions on the solar detoxification of water polluted with pesticides[J]. Water Research, 2009, 43(18):4441-4450. [24] 潘向军,陈剑君. 钝化芳环的硝化反应[J]. 农药, 2006, 45(5):323-324 PAN X J,CHEN J J. Nitration of deactivated aromatics[J]. Agrochemicals, 2006, 45(5):323-324(in Chinese).
[25] LI Y,ZHU T,ZHAO J, et al. Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling[J]. Environmental Science & Technology, 2012, 46(18):10302-10309. [26] ZHOU W,GAO J,ZHAO H, et al. The role of quinone cycle in Fe2+-H2O2 system in the regeneration of Fe2+[J]. Environmental Technology, 2017, 38(15):1887-1896. [27] ZHANG X,DING Y,TANG H, et al. Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst:Efficiency, stability and mechanism[J]. Chemical Engineering Journal, 2014, 236:251-262. [28] ZHANG J,ZHAO X,WANG Y, et al. Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4[J]. Applied Catalysis B:Environmental, 2018, 237:976-985. [29] SALEHHUDIN H S,MOHAMAD E N,MAHADI W N L, et al. Multiple-jet electrospinning methods for nanofiber processing:A review[J]. Materials and Manufacturing Processes, 2017, 33(5):479-498. -

计量
- 文章访问数: 2097
- HTML全文浏览数: 2097
- PDF下载数: 116
- 施引文献: 0