光助Fe/BiOCl活化过硫酸盐降解橙黄Ⅱ

钟欣, 吴迪, 张凯欣, 谭紫茵, 黄伟. 光助Fe/BiOCl活化过硫酸盐降解橙黄Ⅱ[J]. 环境化学, 2019, (12): 2860-2868. doi: 10.7524/j.issn.0254-6108.2019070806
引用本文: 钟欣, 吴迪, 张凯欣, 谭紫茵, 黄伟.

光助Fe/BiOCl活化过硫酸盐降解橙黄Ⅱ

[J]. 环境化学, 2019, (12): 2860-2868. doi: 10.7524/j.issn.0254-6108.2019070806
ZHONG Xin, WU Di, ZHANG Kaixin, TAN Ziyin, HUANG Wei. Photo-assisted activation of persulfate by using Fe/BiOCl for the degradation of azo dye Orange Ⅱ[J]. Environmental Chemistry, 2019, (12): 2860-2868. doi: 10.7524/j.issn.0254-6108.2019070806
Citation: ZHONG Xin, WU Di, ZHANG Kaixin, TAN Ziyin, HUANG Wei.

Photo-assisted activation of persulfate by using Fe/BiOCl for the degradation of azo dye Orange Ⅱ

[J]. Environmental Chemistry, 2019, (12): 2860-2868. doi: 10.7524/j.issn.0254-6108.2019070806

光助Fe/BiOCl活化过硫酸盐降解橙黄Ⅱ

    通讯作者: 钟欣, E-mail: zhongxin@whu.edu.cn
  • 基金项目:

    广东省2018年青年人才创新项目(201912017QX),北京师范大学珠海分校教师科研促进计划(201850001),北京师范大学珠海分校2018年质量工程-环境科学与工程专业虚拟仿真实验教学(201832)资助.

Photo-assisted activation of persulfate by using Fe/BiOCl for the degradation of azo dye Orange Ⅱ

    Corresponding author: ZHONG Xin, zhongxin@whu.edu.cn
  • Fund Project: Supported by the Youth Innovative Foundation Guangdong Province of China (201912017QX), Science Promotion Project Funds (201850001) and Quality Engineering Project of Beijing Normal University, Zhuhai (201832).
  • 摘要:

    为研究Fe/BiOCl在光照下活化过硫酸盐(PS)产生硫酸根自由基(·SO4-)降解偶氮染料橙黄Ⅱ的催化效果,采用一步水热合成法制备铁掺杂BiOCl纳米催化剂,并用X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线光电子能谱(XPS)对其形貌与组成成分进行表征.结果显示,铁元素成功掺杂进入BiOCl的结构中,呈现出纳米盘状形貌结构.在光照辐射下,考察Fe/BiOCl活化PS降解橙黄Ⅱ过程中初始pH、底物浓度、Fe/BiOCl催化剂投加量和PS投加量等影响因素对橙黄Ⅱ降解处理效果的影响.结果显示,橙黄Ⅱ降解效率随着pH值的降低而升高,Fe/BiOCl和PS投加量的增加对橙黄Ⅱ的去除率出现先增加后降低的趋势.Fe/BiOCl催化剂投加量为0.5 g·L-1,PS的投加量为1 mmol·L-1的条件下时,溶液pH值为3.0,反应60 min后,橙黄Ⅱ降解的效果最佳,其降解速率符合拟一级反应动力学.通过对催化剂Fe/BiOCl稳定性研究,经5次连续循环使用后,脱色率仍然可以保持在79.6%,说明该催化剂具有良好的循环使用性能.通过投加叔丁醇(TBA),甲醇(MeOH),草酸铵(AO),对苯醌(BQ)等自由基猝灭剂,证明光助Fe/BiOCl/PS体系中具有光生空穴,硫酸根自由基,羟基自由基和超氧自由基,其中超氧自由基和光生空穴在反应体系中起重要作用.反应过程中橙黄Ⅱ的降解产物运用GC/MS进行检测,推导得出橙黄Ⅱ的降解路径.

  • 加载中
  • [1] TANWAR R, KUMAR S, MANDAL U K. Photocatalytic activity of PANI/Fe0 doped BiOCl under visible light-degradation of Congo red dye[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 333:105-116.
    [2] MA Q L, ZHANG H X, ZHANG X Y, et al. Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate[J]. Chemical Engineering Journal, 2019, 360:848-860.
    [3] 朱维晃,杨瑞,王宏伟.蒽醌活化过硫酸盐降解罗丹明B[J]. 环境化学,2015,34(10):1948-1954.

    ZHU W H, YANG R, WANG H W. Degradation of rhodamine B by quinone-activated persulfate process[J]. Environmental Chemistry, 2015, 34(10):1948-1954(in Chinese).

    [4] 王艳,杨硕,张米雪,等.ZnFe/BC活化过硫酸盐降解金橙Ⅱ[J].环境化学,2018,37(12):2630-2637.

    WANG Y, YANG S, ZHANG M, et al. Degradation of orange Ⅱ by Zn Fe/BC catalyzed persulfate[J]. Environmental Chemistry, 2018, 37(12):2630-2637(in Chinese).

    [5] 卢涛,刘国,李春雪,等.BiOCl/SiO2/Fe3O4复合材料可见光催化去除水中亚甲基蓝[J].环境科学学报,2019,39(2):352-358.

    LU T,LIU G,LI C X,et al. Photocatalytic degradation of methylene blue in water by BiOCl/SiO2/Fe3O4 composites[J]. Acta Scientiae Circumstantiae, 2019, 39(2):352-358(in Chinese).

    [6] 付军,余艳鸽,赵昱东,等.模拟日光-非均相Fenton光催化降解喹啉[J]. 环境化学,2017,36(5):1072-1082.

    FU J, YU Y, ZHAO Y, et al.Simulated sunlight-heterogeneous Fenton degradation of quinoline in wastewater[J]. Environmental Chemistry, 2017, 36(5):1072-1082(in Chinese).

    [7] MIAO S, ZHA Z, LI Y, et al. Visible-light-driven MIL-53(Fe)/BiOCl composite assisted by persulfate:Photocatalytic performance and mechanism[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 380:111862.
    [8] GAO M C, ZHANG D F, PU X R, et al. Combustion synthesis of Fe-doped BiOCl with high visible-light photocatalytic activities[J]. Separation and Purification Technology, 2016, 162:114-119.
    [9] WANG C Y, ZHANG Y J, WANG W K, et al. Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation[J]. Applied Catalysis B:Environmental, 2018, 221:320-328.
    [10] MOYET M A, ARTHUR R B, LUEDERS E E, et al. The role of copper (Ⅱ) ions in Cu-BiOCl for use in the photocatalytic degradation of atrazine[J]. Journal of Environmental Chemical Engineering, 2018, 6(4):5595-5601.
    [11] YU N, CHEN Y, ZHANG W H, et al. Preparation of Yb3+/Er3+ co-doped BiOCl sheets as efficient visible-light-driven photocatalysts[J]. Materials Letters, 2016, 179:154-157.
    [12] 林金,高仁金,曾美娜,等.Fe掺杂BiOCl的制备及其光催化性能研究[J]. 闽江学院学报,2017,5:86-91. LIN J, GAO R J, ZENG M N, et al. Study on preparation and properties of Fe-doped BiOCl[J]. Journal of Minjian University, 2017

    , 5:86-91(in Chinese).

    [13] CHEN H, WANG X, BI W, et al. Photodegradation of carbamazepine with BiOCl/Fe3O4 catalyst under simulated solar light irradiation[J]. Journal of Colloid and Interface Science, 2017, 502:89-99.
    [14] SHANG J, CHEN T, WANG X, et al. Facile fabrication and enhanced photocatalytic performance:From BiOCl to element-doped BiOCl[J]. Chemical Physics Letters, 2018, 706:483-487.
    [15] HU J, JING X, ZHAI L, et al. BiOCl facilitated photocatalytic degradation of atenolol from water:Reaction kinetics, pathways and products[J]. Chemosphere, 2019, 220:77-85.
    [16] HUANG C, HU J, CONG S, et al. Hierarchical BiOCl microflowers with improved visible-light-driven photocatalytic activity by Fe(ⅡI) modification[J]. Applied Catalysis B:Environmental, 2015, 174-175:105-112.
    [17] MI Y, WEN L, WANG Z, et al. Fe(Ⅲ) modified BiOCl ultrathin nanosheet towards high-efficient visible-light photocatalyst[J]. Nano Energy, 2016, 30:109-117.
    [18] NUSSBAUM M, WALDMANN N S, PAZ Y. Synergistic photocatalytic effect in Fe, Nb-doped BiOCl[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2014, 290:11-21.
    [19] TIAN F, LI G, ZHAO H, et al. Residual Fe enhances the activity of BiOCl hierarchical nanostructure for hydrogen peroxide activation[J]. Journal of Catalysis, 2019, 370:265-273.
    [20] TEKIN G, ERSOZ G, ATALAY S. Visible light assisted Fenton oxidation of tartrazine using metal doped bismuth oxyhalides as novel photocatalysts[J]. Journal of Environmental Management, 2018, 228:441-450.
    [21] NEPPOLIAN B,CELIK E,CHOI H. Photochemical oxidation of arsenic(ⅡI) to arsenic(V) using peroxydisulfate ions as an oxidizing agent[J].Environmental Science and Technology, 2008, 42(16):6179-6184.
    [22] 王徐越,孙振亚,谢裕兴,等."光催化铁循环"作用对自组装TiO2-FeOOH复合膜活性的影响[J]. 环境化学,2018,37(11):2555-2564.

    WANG X Y,SUN Z Y,XIE Y X,et al. "Photocatalysis Iron Cycling" effect on the photocatalytic activity of self-assembled TiO2-FeOOH nano-films[J]. Environmental Chemistry, 2018, 37(11):2555-2564(in Chinese).

    [23] ZHANG X, FENG M, QU R, et al. Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs[J]. Chemical Engineering Journal, 2016, 301:1-11.
    [24] TAN C, DONG Y, SHI L, et al. Degradation of Orange Ⅱ in ferrous activated peroxymonosulfate system:Efficiency, situ EPR spin trapping and degradation pathway study[J]. Journal of the Taiwan Intitute of Chemical Engineers, 2018, 83:74-81.
    [25] LIN H, ZHANG H, WANG X, et al. Electro-Fenton removal of orange Ⅱ in a divided cell:Reaction mechanism, degradation pathway and toxicity evolution[J]. Separation and Purification Technology, 2014, 122:533-540.
    [26] LIN X, MA Y, WAN J, et al. Efficient degradation of Orange G with persulfate activated by recyclable FeMoO4[J]. Chemosphere, 2019, 214:642-650.
    [27] CHEN H, MOTUZAS J, MARTENS W, et al. Ceramic metal oxides with Ni2+ active phase for the fast degradation of Orange Ⅱ dye under dark ambiance[J]. Ceramics International, 2018, 44(6):6634-6640.
  • 加载中
计量
  • 文章访问数:  1791
  • HTML全文浏览数:  1791
  • PDF下载数:  42
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-07-08
  • 刊出日期:  2019-12-10

光助Fe/BiOCl活化过硫酸盐降解橙黄Ⅱ

    通讯作者: 钟欣, E-mail: zhongxin@whu.edu.cn
  • 环境科学与工程系, 北京师范大学珠海分校, 珠海, 519000
基金项目:

广东省2018年青年人才创新项目(201912017QX),北京师范大学珠海分校教师科研促进计划(201850001),北京师范大学珠海分校2018年质量工程-环境科学与工程专业虚拟仿真实验教学(201832)资助.

摘要: 

为研究Fe/BiOCl在光照下活化过硫酸盐(PS)产生硫酸根自由基(·SO4-)降解偶氮染料橙黄Ⅱ的催化效果,采用一步水热合成法制备铁掺杂BiOCl纳米催化剂,并用X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线光电子能谱(XPS)对其形貌与组成成分进行表征.结果显示,铁元素成功掺杂进入BiOCl的结构中,呈现出纳米盘状形貌结构.在光照辐射下,考察Fe/BiOCl活化PS降解橙黄Ⅱ过程中初始pH、底物浓度、Fe/BiOCl催化剂投加量和PS投加量等影响因素对橙黄Ⅱ降解处理效果的影响.结果显示,橙黄Ⅱ降解效率随着pH值的降低而升高,Fe/BiOCl和PS投加量的增加对橙黄Ⅱ的去除率出现先增加后降低的趋势.Fe/BiOCl催化剂投加量为0.5 g·L-1,PS的投加量为1 mmol·L-1的条件下时,溶液pH值为3.0,反应60 min后,橙黄Ⅱ降解的效果最佳,其降解速率符合拟一级反应动力学.通过对催化剂Fe/BiOCl稳定性研究,经5次连续循环使用后,脱色率仍然可以保持在79.6%,说明该催化剂具有良好的循环使用性能.通过投加叔丁醇(TBA),甲醇(MeOH),草酸铵(AO),对苯醌(BQ)等自由基猝灭剂,证明光助Fe/BiOCl/PS体系中具有光生空穴,硫酸根自由基,羟基自由基和超氧自由基,其中超氧自由基和光生空穴在反应体系中起重要作用.反应过程中橙黄Ⅱ的降解产物运用GC/MS进行检测,推导得出橙黄Ⅱ的降解路径.

English Abstract

参考文献 (27)

目录

/

返回文章
返回