黄土区长武塬地下水水化学特征及控制因素分析
The hydrochemical characteristics and controlling factors of groundwater in the Changwu loess tableland
-
摘要: 地下水是黄土塬区重要的水源,分析其水化学性质及控制因素,可为区域水资源管理提供重要的依据.2015-2017年对长武塬地下水进行了采样化验分析.通过多元统计分析、相关性分析以及正向推演模型等方法分析了地下水的水化学特征并探究了其控制因素.整体而言,地下水是低矿化度水,水化学类型为Ca+Mg-HCO3型,Mg2+和Ca2+占阳离子质量浓度的平均值为77%,HCO3-占阴离子质量浓度的平均值为75%.离子组成具有明显的时间变化特征.地下水水化学离子主要来源于岩石风化作用,特别是碳酸盐岩的风化作用,其次为硅酸盐岩和蒸发盐岩的风化作用,分别占岩石风化作用的平均值为65%、27%和8%.人类活动和大气沉降贡献较小,同时阳离子交替吸附对水化学也有一定影响.Abstract: Groundwater is an important water source on the loess tableland, and analysis of its water chemistry and controlling factors can provide important information for regional water resources management. This study thus collected the groundwater samples in the Changwu loess tableland for the period 2015-2017 and analyzed their ion concentrations. Further, the hydrochemical characteristics and controlling factors were investigated by the multivariate statistical analysis, correlation analysis and the forward model. Overall, the groundwater was Ca+Mg-HCO3 type low salinity water. Mg2+ and Ca2+ accounted for 77% of the cation mass concentration, while HCO3- accounted for 75% of the anion mass concentration. Ion concentrations had obvious seasonal variations. The groundwater solutes were mainly derived from rock weathering. In specific, carbonate weathering, silicate weathering and evaporate dissolution contributed to 65%, 27% and 8% of the total rock weathering, respectively. Human activities and atmospheric inputs had minor impacts on groundwater solutes, and the cation exchange and adsorption also affected water chemistry to some extent.
-
-
[1] MEYBECK M. Riverine quality at the Anthropocene:Propositions for global space and time analysis, illustrated by the Seine River[J]. Aquatic Sciences-Research Across Boundaries, 2002,64(4):376-393. [2] AJI K, TANG C, SONG X, et al. Characteristics of chemistry and stable isotopes in groundwater of Chaobai and Yongding River basin, North China Plain[J]. Hydrological Processes, 2010,22(1):63-72. [3] CURRELL MATTHEW J, CARTWRIGHT IAN. Major-ion chemistry, δ 13 C and 87 Sr/86 Sr as indicators of hydrochemical evolution and sources of salinity in groundwater in the Yuncheng Basin, China[J]. Hydrogeology Journal, 2011,19(4):835-850. [4] HUANG G, LIU C, SUN J, et al. A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area:A case study of the Pearl River Delta[J]. Science of the Total Environment, 2018,625:510-518. [5] LI J, LI Z. Analysis of spatiotemporal variations in land use on the Loess Plateau of China during 1986-2010[J]. Environmental Earth Sciences, 2016,75(11):997-1012. [6] QIAN J, PENG Y, ZHAO W, et al. Hydrochemical processes and evolution of karst groundwater in the northeastern Huaibei Plain, China[J]. Hydrogeology Journal, 2018,26(4):1721-1729. [7] WANG T, CHEN J, XU I, et al. Isotopes and hydrochemistry of Daihai Lake recharging sources, Northern China[J]. Journal of Radioanalytical & Nuclear Chemistry, 2017,312(3):615-629. [8] CHEN J S, SUN X X, TAN H B, et al. Isotopic and hydrochemical data to restrict the origin of the groundwater in the Badain Jaran Desert, Northern China[J], Geochemistry International, 2012,50(5):455-465. [9] CHENG L, LIU W, LI Z, et al. Study of soil water movement and groundwater recharge for the loess tableland using environmental tracers[J]. Transactions of the Asabe, 2014,57(1):23-30. [10] GATES JOHN B, SCANLON B R, MU X M, et al. Impacts of soil conservation on groundwater recharge in the semi-arid Loess Plateau, China[J]. Hydrogeology Journal, 2011,19(4):865-875. [11] LI Z, LIN X Q, COLES A E, et al. Catchment-scale surface water-groundwater connectivity on China's Loess Plateau[J]. Catena, 2017,152:268-276. [12] ZHAN L C, CHEN J S, XU Y, et al. Allogenic water recharge of groundwater in the Erenhot wasteland of northern China[J]. Journal of Radioanalytical & Nuclear Chemistry, 2017,311(3):2015-2028. [13] CHENG L, LIU W, LI Z, et al. Land use change affects groundwater recharge in the Changwu Loess Tableland of China[J]. Advances in Water Science, 2016,27(5):670-678. [14] MO X G, LIN Z, LIU S X. Climate change impacts on the ecohydrological processes in the Wuding River basin[J]. Eco Summit, 2007,50(6):229-229. [15] 寇永朝,华琨,李洲,等.泾河支流地表水及地下水的水化学特征及其控制因素[J].环境科学,2018, 39(7):140-147. KOU Y C,HUA K, LI Z, et al. Hydrochemical characteristics and controlling factors of surface water and groundwater in tributaries of Jing River[J].Environmental Science,2018, 39(7):140-147(in Chinese).
[16] FAN B, ZHAO Z, TAO F, et al. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin:A comparison among the upstream, midstream and downstream[J]. Journal of Asian Earth Sciences, 2014,96:17-26. [17] HU M, STALLARD R F, EDMOND J M. Major ion chemistry of some large Chinese Rivers[J]. Nature, 1982,298(5874):550-553. [18] ZHANG Q Q, JIN Z D, ZHANG F, et al. Seasonal variation in river water chemistry of the middle reaches of the Yellow River and its controlling factors[J]. Journal of Geochemical Exploration, 2015,156(3):101-113. [19] 刘东生. 黄土的物质成分和结构[M].北京:科学出版社,1966. LIU D S. Material composition and structure of loess[M].Beijing:Science Press,1966(in Chinese). [20] 沈照理. 水文地质学[M].北京:科学出版社, 1985. SHEN Z L. Hydrogeology[M].Beijing:Science Press, 1985(in Chinese). [21] 陈曦, 李志, 程立平,等. 黄土塬区大气降水的氢氧稳定同位素特征及水汽来源[J]. 生态学报. 2016,36(1):98-106. CHEN X, LI Z, CHENG L P, et al. Hydrogen and oxygen stable isotope characteristics and water vapor sources of atmospheric precipitation in the Loess Plateau Region[J]. Chinese Journal of Ecology. 2016,36(1):98-106(in Chinese).
[22] 吴明清, 文启忠, 潘景瑜,等. 黄河中游地区马兰黄土主要化学成分的再研究[J]. 自然科学进展:国家重点实验室通讯, 1996(1):80-85. WU M Q, WEN Q Z, PAN J Y, et al. The rediscovery of major chemistry of Malan loess in the middle reaches of Yellow River basin[J]. Prog. Nat. Sci. 1996 ,6(1), 80-85(in Chinese).
[23] MITAMURA OSAMU, SEIKE YASUSHI, KONDO KUNIO, et al. First investigation of ultraoligotrophic alpine Lake Puma Yumco in the pre-Himalayas, China[J]. Limnology, 2003,4(3):167-175. [24] PIPER A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Eos, Transactions American Geophysical Union, 1944, 25(6):914-928. [25] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962):1088-1090. [26] GALY A, FRANCE-LANORD C. Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget[J]. Chemical Geology, 1999, 159(1-4):31-60. [27] XIAO J. Chemical composition and source identification of rainwater constituents at an urban site in Xi'an[J]. Environmental Earth Sciences, 2016,75(3):209-221- [28] 胡春华, 童乐, 万齐远, 等. 环鄱阳湖浅层地下水水化学特征的时空变化[J]. 环境化学, 2013,32(6):974-979. HU C H, TONG L, WAN Q Y, et al. Temporal and spatial changes of groundwater hydrochemical characteristics in the shallow layer of Poyang Lake[J]. Environmental Chemistry, 2013,32(6):974-979(in Chinese).
[29] 林永生, 裴建国, 杜毓超, 等. 基于多元统计方法的岩溶地下水化学特征及影响因素分析[J]. 环境化学, 2016,35(11):2394-2401. LIN Y S, YAN J G, DU Y C, et al. Analysis of karst groundwater chemical characteristics and influencing factors based on multivariate statistical methods[J]. Environmental Chemistry, 2016,35(11):2394-401(in Chinese).
[30] YOKOO Y, NAKANO T, NISHIKAWA M, et al. Mineralogical variation of Sr-Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific[J]. Chemical Geology, 2004,204(1-2):45-62. [31] SCHOELLER H. Hydrodynamique dans le karst[J]. Chroniqued Hydrogeologie, 1967, 10(2):7-21. [32] [33] XIAO J, JIN Z D, DING H, et al. Geochemistry and solute sources of surface waters of the Tarim River Basin in the extreme arid region, NW Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2012,54-55(2):162-173. -

计量
- 文章访问数: 3458
- HTML全文浏览数: 3458
- PDF下载数: 125
- 施引文献: 0