垂直流人工湿地去除布洛芬和罗红霉素的影响因素分析

杨月琴, 钟成华. 垂直流人工湿地去除布洛芬和罗红霉素的影响因素分析[J]. 环境化学, 2019, (12): 2780-2788. doi: 10.7524/j.issn.0254-6108.2019010601
引用本文: 杨月琴, 钟成华. 垂直流人工湿地去除布洛芬和罗红霉素的影响因素分析[J]. 环境化学, 2019, (12): 2780-2788. doi: 10.7524/j.issn.0254-6108.2019010601
YANG Yueqin, ZHONG Chenghua. Analysis on influence factors of ibuprofen and roxithromycin removal in vertical flow constructed wetlands[J]. Environmental Chemistry, 2019, (12): 2780-2788. doi: 10.7524/j.issn.0254-6108.2019010601
Citation: YANG Yueqin, ZHONG Chenghua. Analysis on influence factors of ibuprofen and roxithromycin removal in vertical flow constructed wetlands[J]. Environmental Chemistry, 2019, (12): 2780-2788. doi: 10.7524/j.issn.0254-6108.2019010601

垂直流人工湿地去除布洛芬和罗红霉素的影响因素分析

    通讯作者: 钟成华, E-mail: zhongchenghua@163.com
  • 基金项目:

    重庆市市级研究生创新型科研项目(CYS18320)资助.

Analysis on influence factors of ibuprofen and roxithromycin removal in vertical flow constructed wetlands

    Corresponding author: ZHONG Chenghua, zhongchenghua@163.com
  • Fund Project: Supported by Chongqing Graduate Innovation Research Project(CYS18320).
  • 摘要: 选择典型消炎药布洛芬和抗生素罗红霉素作为研究对象,研究垂直流人工湿地中植物、水力停留时间、进水方式对布洛芬和罗红霉素的去除效果的影响.结果显示,在湿地种植的美人蕉、花叶芦竹、伞草和无植物对照组中,美人蕉组去除布洛芬的效率最高(69.74%),花叶芦竹对罗红霉素的去除效果最好(94.06%);在0-4 d范围内设置水力停留时间(HRT),发现增加水力停留时间可以使布洛芬更加充分的被人工湿地中生物降解,它的最佳水力停留时间为4 d,而罗红霉素在HRT=4 d时的去除效率与HRT=2 d相比并没有显著提高(P > 0.05),却增加了运行成本,故2 d才是罗红霉素相对合适的水力停留时间;两种药物的去除效率还受进水方式的影响,快速进水的进水方式有利于布洛芬和罗红霉素的去除.通过方差分析发现,去除布洛芬时,美人蕉去除效果并未显著优于花叶芦竹和伞草组(P > 0.05);在去除罗红霉素时,花叶芦竹的去除效果显著优于美人蕉组和伞草组(P<0.05),伞草与美人蕉组没有显著差异(P>0.05);3组有植物组的人工湿地对布洛芬和罗红霉素去除效果均明显好于无植物组(P<0.01);罗红霉素实验组植物类型与进水方式交互作用显著.
  • 加载中
  • [1] CARBALLA M, OMIL F, LEMA J M, et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant.[J]. Water Research, 2004, 38(12):2918-2926.
    [2] KUMMERER K. Antibiotics in the aquatic environment:A review——part II[J].Chemosphere:2009, 75:435-441.
    [3] YANG J F, YING G G, ZHAO J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. Journal of Environmental Science and Health Part B Pesticides Food Contaminants and Agricultural Wastes, 2011, 46(3):272-280.
    [4] 郑佳伦,刘超翔,刘琳,黄栩.畜禽养殖业主要废弃物处理工艺消除抗生素研究进展[J].环境化学,2017,36(1):37-47.

    ZHENG J L,LIU C X,HUANG X. Removal of antibiotics in waste and wastewater treatment facilities of animal breeding industry:A review[J].Environment chemistry,2017,36(1):37-47(in Chinese).

    [5] MATAMORO V, GARCIA J, BAVONA J M. Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent[J]. Water Research. 2008, 42:653-660.
    [6] MATAMORO V, BAVONA J M. Behavior of emerging pollutants constructed wetlands[J].The Handbook of Environment Chemistry. 2008,5:199-217.
    [7] MATAMORO V, ARIAS C, BRIX H, et al. Preliminary screening of small-scale domestic wastewater systems for removal of pharmaceutical and treatment personal care products[J]. Water Research.2009, 43:55-62.
    [8] ZHANG D Q, TAN S K, GERSBERG R M. Removal of pharmaceutical compounds in tropical constructed wetlands[J]. Ecological Engineering, 2011, 37(3):460-464.
    [9] HIJOSA-VALSERO M, FINK G, SCHLUSENER M P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization[J]. Chemosphere, 2011, 83(5):713-719.
    [10] MATAMORO V, CASELLES-OSORIO A, GARCIA J, et al. Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment[J]. Science of the Total Environment, 2008, 394(1):171-176.
    [11] AVILA C, PEDESCOLL A, MATAMORO V, et al. Capacity of a horizontal subsurface flow constructed wetland system for the removal of emerging pollutants:An injection experiment[J]. Chemosphere, 2010, 81(9):1137-1142.
    [12] 阿丹. 人工湿地对14种常用抗生素的去除效果及影响因素研究[D]. 广州:暨南大学, 2012. A D. The removal efficiency and impact factors of 14 antibiotics in constructed wetlands[D].Guangzhou:Jinan University,2012(in Chinese).
    [13] SIMONICH S L, HITES R A. Organic pollutant accumulation in vegetation[J]. Environmental Science & Technology, 1995, 29(12):2905-2914.
    [14] 凌婉婷, 朱利中, 高彦征,等. 植物根对土壤中PAHs的吸收及预测[J]. 生态学报, 2005, 25(9):2320-2325.

    LING W T, ZHU L Z, GAO Y Z, et al. Root uptake and its prediction model of PAHs from soils[J].Acta Ecologica Sinica,2005, 25(9):2320-2325(in Chinese).

    [15] 陈军. 生活污水中抗生素和耐药基因的人工湿地去除机制与系统优化[D].北京:中国科学院大学,2017. CHEN J. Removal of antibiotics and ARGs from dometic sewage by constructed wetlands:removal mechanism and system optimization.[D]. Beijing:University of Chinese Academy of Sciences,2017(in Chinese).
    [16] 鄢璐, 王世和, 钟秋爽,等. 强化供氧条件下潜流型人工湿地运行特性[J]. 环境科学, 2007, 28(4):736-741.

    YAN L,WANG S H,ZHONG Q S, et al. Study on running characteristics of aerating subsurface flow wetlands[J]. Environment Science,2007, 28(4):736-741(in Chinese)

  • 加载中
计量
  • 文章访问数:  1661
  • HTML全文浏览数:  1661
  • PDF下载数:  25
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-06
  • 刊出日期:  2019-12-10

垂直流人工湿地去除布洛芬和罗红霉素的影响因素分析

    通讯作者: 钟成华, E-mail: zhongchenghua@163.com
  • 重庆工商大学环境与资源学院, 重庆, 400067
基金项目:

重庆市市级研究生创新型科研项目(CYS18320)资助.

摘要: 选择典型消炎药布洛芬和抗生素罗红霉素作为研究对象,研究垂直流人工湿地中植物、水力停留时间、进水方式对布洛芬和罗红霉素的去除效果的影响.结果显示,在湿地种植的美人蕉、花叶芦竹、伞草和无植物对照组中,美人蕉组去除布洛芬的效率最高(69.74%),花叶芦竹对罗红霉素的去除效果最好(94.06%);在0-4 d范围内设置水力停留时间(HRT),发现增加水力停留时间可以使布洛芬更加充分的被人工湿地中生物降解,它的最佳水力停留时间为4 d,而罗红霉素在HRT=4 d时的去除效率与HRT=2 d相比并没有显著提高(P > 0.05),却增加了运行成本,故2 d才是罗红霉素相对合适的水力停留时间;两种药物的去除效率还受进水方式的影响,快速进水的进水方式有利于布洛芬和罗红霉素的去除.通过方差分析发现,去除布洛芬时,美人蕉去除效果并未显著优于花叶芦竹和伞草组(P > 0.05);在去除罗红霉素时,花叶芦竹的去除效果显著优于美人蕉组和伞草组(P<0.05),伞草与美人蕉组没有显著差异(P>0.05);3组有植物组的人工湿地对布洛芬和罗红霉素去除效果均明显好于无植物组(P<0.01);罗红霉素实验组植物类型与进水方式交互作用显著.

English Abstract

参考文献 (16)

目录

/

返回文章
返回