MnO2纳米酶催化ABTS的显色反应及其在Fe2+和Pb2+检测中的应用

谢道月, 刘琦, 汪珺, 张锡涛, 顾凯业, 孙凯. MnO2纳米酶催化ABTS的显色反应及其在Fe2+和Pb2+检测中的应用[J]. 环境化学, 2019, (12): 2843-2850. doi: 10.7524/j.issn.0254-6108.2019010404
引用本文: 谢道月, 刘琦, 汪珺, 张锡涛, 顾凯业, 孙凯.

MnO2纳米酶催化ABTS的显色反应及其在Fe2+和Pb2+检测中的应用

[J]. 环境化学, 2019, (12): 2843-2850. doi: 10.7524/j.issn.0254-6108.2019010404
XIE Daoyue, LIU Qi, WANG Jun, ZHANG Xitao, GU Kaiye, SUN Kai. Chromogenic reaction of ABTS catalyzed by MnO2 nanozyae and its application in the visual detection of Fe2+ and Pb2+[J]. Environmental Chemistry, 2019, (12): 2843-2850. doi: 10.7524/j.issn.0254-6108.2019010404
Citation: XIE Daoyue, LIU Qi, WANG Jun, ZHANG Xitao, GU Kaiye, SUN Kai.

Chromogenic reaction of ABTS catalyzed by MnO2 nanozyae and its application in the visual detection of Fe2+ and Pb2+

[J]. Environmental Chemistry, 2019, (12): 2843-2850. doi: 10.7524/j.issn.0254-6108.2019010404

MnO2纳米酶催化ABTS的显色反应及其在Fe2+和Pb2+检测中的应用

    通讯作者: 孙凯, E-mail: sunkai@ahau.edu.cn
  • 基金项目:

    国家自然科学基金(41471405),安徽省自然科学基金(1808085QD104),安徽农业大学稳定和引进人才项目(yj2018-31)资助.

Chromogenic reaction of ABTS catalyzed by MnO2 nanozyae and its application in the visual detection of Fe2+ and Pb2+

    Corresponding author: SUN Kai, sunkai@ahau.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41471405), the Natural Science Foundation of Anhui Province (1808085QD104), and the Stabilized and Introduced Talent Foundation of Anhui Agricultural University (yj2018-31).
  • 摘要:

    本文探讨了纳米MnO2催化2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)显色反应的类氧化酶活性,系统地评估了单一金属离子Fe2+和Pb2+对MnO2纳米酶活性的影响及作用机理,揭示了MnO2纳米酶-ABTS反应体系在选择性检测实际水体中Fe2+和Pb2+的应用.在pH 3.8、25℃条件下,纳米MnO2能够催化ABTS单电子转移形成ABTS阳离子自由基(ABTS·+,绿色产物),其类氧化酶活性为0.0412 U·mL-1.酶剂量、底物浓度、pH和温度影响了MnO2纳米酶活性.在反应体系中添加0.01 mmol·L-1 Fe2+(或Pb2+)显著地抑制了MnO2纳米酶活性(P < 0.01),主要是由于Fe2+(或Pb2+)在静电引力作用下强烈吸附在纳米MnO2表面,导致MnO2纳米酶催化活性的钝化甚至失活.其中Fe2+吸附在MnO2纳米酶表面能够与多价锰发生氧化还原反应,而Pb2+特异性吸附在MnO2纳米酶表面形成络合物.加标回收试验结果表明,MnO2纳米酶能够用于选择性测定实际水样中单一污染的Fe2+和Pb2+.MnO2纳米酶-ABTS反应体系对天然水体中Fe2+和Pb2+的检测具有较高精确度(相对误差为3.4%-10.5%)和良好回收性能(回收率为96%-110%).研究结果提供了一种简单、快速、高灵敏的检测方法用于可视化分析环境水样中Fe2+和Pb2+浓度.

  • 加载中
  • [1] FAVERO G, FUSCO G, MAZZEI F, et al. Electrochemical characterization of graphene and MWCNT screen-printed electrodes modified with AuNPs for laccase biosensor development[J]. Nanomaterials, 2015, 5(4):1995-2006.
    [2] RODRíGUEZ-DELGADO M M, ALEMáN-NAVA G S, RODRíGUEZ-DELGADO J M, et al. Laccase-based biosensors for detection of phenolic compounds[J]. TrAC Trends in Analytical Chemistry, 2015, 74:21-45.
    [3] 龚睿, 孙凯, 谢道月. 真菌漆酶在绿色化学中的研究进展[J]. 生物技术通报, 2018, 34(3):1-6.

    GONG R, SUN K, XIE D. Applications of fungal laccase in green chemistry[J]. Biotechnology Bulletin, 2018, 34(3):1-6(in Chinese).

    [4] RAO M A, SCELZA R, ACEVEDO F, et al. Enzymes as useful tools for environmental purposes[J]. Chemosphere, 2014, 107:145-162.
    [5] 高利增, 阎锡蕴. 纳米酶的发现与应用[J]. 生物化学与生物物理进展, 2013, 40(10):892-902.

    GAO L, YAN X. Discovery and current application of nanozyme[J]. Progress in Biochemistry and Biophysics, 2013, 40(10):892-902(in Chinese).

    [6] WEI H, WANG E. Nanomaterials with enzyme-like characteristics (nanozymes):Next-generation artificial enzymes[J]. Chemical Society Reviews, 2013, 42(14):6060-6093.
    [7] HE Y, WANG Z, LONG D. Direct visual detection of MnO2 nanosheets within seconds[J]. Analytical and Bioanalytical Chemistry, 2016, 408(4):1231-1236.
    [8] ASATI A, SANTRA S, KAITTANIS C, et al. Oxidase-like activity of polymer-coated cerium oxide nanoparticles[J]. Angewandte Chemie, 2009, 121(13):2344-2348.
    [9] LIU J, MENG L, FEI Z, et al. MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione[J]. Biosensors and Bioelectronics, 2017, 90:69-74.
    [10] WANG X, LIU J, QU R, et al. The laccase-like reactivity of manganese oxide nanomaterials for pollutant conversion:Rate analysis and cyclic voltammetry[J]. Scientific Reports, 2017, 7(1):7756.
    [11] WANG Q, WEI H, ZHANG Z, et al. Nanozyme:An emerging alternative to natural enzyme for biosensing and immunoassay[J]. TrAC Trends in Analytical Chemistry, 2018, 105:218-224.
    [12] HAN L, SHI J, LIU A. Novel biotemplated MnO2 1D nanozyme with controllable peroxidase-like activity and unique catalytic mechanism and its application for glucose sensing[J]. Sensors and Actuators B:Chemical, 2017, 252:919-926.
    [13] VALLABANI N V S, KARAKOTI A S, SINGH S. ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme:One step detection of blood glucose at physiological pH[J]. Colloids and Surfaces B:Biointerfaces, 2017, 153:52-60.
    [14] LUO Q, WANG Z, FENG M, et al. Factors controlling the rate of perfluorooctanoic acid degradation in laccase-mediator systems:The impact of metal ions[J]. Environmental Pollution, 2017, 224:649-657.
    [15] HSU C L, LIEN C W, HARROUN S G, et al. Metal-deposited bismuth oxyiodide nanonetworks with tunable enzyme-like activity:Sensing of mercury and lead ions[J]. Materials Chemistry Frontiers, 2017, 1(5):893-899.
    [16] PEREZ J M, ASATI A, NATH S, et al. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties[J]. Small, 2008, 4(5):552-556.
    [17] SONG Y, JIANG J, MA J, et al. ABTS as an electron shuttle to enhance the oxidation kinetics of substituted phenols by aqueous permanganate[J]. Environmental Science & Technology, 2015, 49(19):11764-11771.
    [18] WEI H, DENG Y, YI H. Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system[J]. Biosensors and Bioelectronics, 2017, 91:89-94.
    [19] MIZOBUTSI G P, FINGER F L, RIBEIRO R A, et al. Effect of pH and temperature on peroxidase and polyphenoloxidase activities of litchi pericarp[J]. Scientia Agricola, 2010, 67(2):213-217.
    [20] SUN K, LUO Q, GAO Y, et al. Laccase-catalyzed reactions of 17β-estradiol in the presence of humic acid:Resolved by high-resolution mass spectrometry in combination with 13C labeling[J]. Chemosphere, 2016, 145:394-401.
    [21] 董玉明, 张晶晶, 王光丽, 等. 二氧化锰纳米管模拟氧化酶的性能、抑制剂及其对Pb2+的测定[J]. 分析测试学报, 2014, 33(2):173-178.

    DONG Y, ZHANG J, WANG G, et al. Property,inhibitor and application of oxidase mimics based on manganese dioxide nanotube[J]. Journal of Instrumental Analysis, 2014, 33(2):173-178(in Chinese).

    [22] LI W, CHEN B, ZHANG H, et al. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury (II) ions[J]. Biosensors and Bioelectronics, 2015, 66:251-258.
    [23] DOERRER L H. Steric and electronic effects in metallophilic double salts[J]. Dalton Transactions, 2010, 39(15):3543-3553.
    [24] XIE J, ZHENG Y, YING J Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions[J]. Chemical Communications, 2010, 46(6):961-963.
  • 加载中
计量
  • 文章访问数:  2351
  • HTML全文浏览数:  2351
  • PDF下载数:  63
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-04
  • 刊出日期:  2019-12-10

MnO2纳米酶催化ABTS的显色反应及其在Fe2+和Pb2+检测中的应用

    通讯作者: 孙凯, E-mail: sunkai@ahau.edu.cn
  • 农田生态保育与污染防控安徽省重点实验室, 安徽农业大学资源与环境学院, 合肥, 230036
基金项目:

国家自然科学基金(41471405),安徽省自然科学基金(1808085QD104),安徽农业大学稳定和引进人才项目(yj2018-31)资助.

摘要: 

本文探讨了纳米MnO2催化2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)显色反应的类氧化酶活性,系统地评估了单一金属离子Fe2+和Pb2+对MnO2纳米酶活性的影响及作用机理,揭示了MnO2纳米酶-ABTS反应体系在选择性检测实际水体中Fe2+和Pb2+的应用.在pH 3.8、25℃条件下,纳米MnO2能够催化ABTS单电子转移形成ABTS阳离子自由基(ABTS·+,绿色产物),其类氧化酶活性为0.0412 U·mL-1.酶剂量、底物浓度、pH和温度影响了MnO2纳米酶活性.在反应体系中添加0.01 mmol·L-1 Fe2+(或Pb2+)显著地抑制了MnO2纳米酶活性(P < 0.01),主要是由于Fe2+(或Pb2+)在静电引力作用下强烈吸附在纳米MnO2表面,导致MnO2纳米酶催化活性的钝化甚至失活.其中Fe2+吸附在MnO2纳米酶表面能够与多价锰发生氧化还原反应,而Pb2+特异性吸附在MnO2纳米酶表面形成络合物.加标回收试验结果表明,MnO2纳米酶能够用于选择性测定实际水样中单一污染的Fe2+和Pb2+.MnO2纳米酶-ABTS反应体系对天然水体中Fe2+和Pb2+的检测具有较高精确度(相对误差为3.4%-10.5%)和良好回收性能(回收率为96%-110%).研究结果提供了一种简单、快速、高灵敏的检测方法用于可视化分析环境水样中Fe2+和Pb2+浓度.

English Abstract

参考文献 (24)

目录

/

返回文章
返回