沉淀陈化对Ce0.7Mn0.3Ox催化净化柴油车尾气碳颗粒的影响
Effects of precipitation ripening on the catalytic diesel soot purification of Ce0.7Mn0.3Ox mixed oxides
-
摘要: 采用沉淀陈化法制备了Ce∶Mn摩尔比为7∶3的CeO2-MnOx复合氧化物(Ce0.7Mn0.3Ox-PR),并使用X射线多晶粉末衍射(XRD)、场发射扫描电子显微镜(SEM)、高分辨率透射电子显微镜(TEM)、N2吸附-脱附、X射线光电子能谱(XPS)和拉曼光谱(Raman)对所制备复合氧化物催化剂进行表征.结果表明,沉淀陈化过程可有效促进Ce0.7Mn0.3Ox-PR催化剂晶粒的生长,稳定催化剂的织构性质,且明显有利于Mn离子进入CeO2晶格,减少MnOx物种在催化剂表面的聚集.Mn离子进入CeO2晶格可有效增加Ce0.7Mn0.3Ox-PR催化剂的晶格氧和氧空位,从而有助于其表现出更优异的碳颗粒催化氧化性能.所制备的Ce0.7Mn0.3Ox-PR催化剂对碳颗粒催化氧化的起燃温度(T50)为362℃、完全转化温度(T90)为419℃,该性能明显优于传统共沉淀法所制备的Ce0.7Mn0.3Ox-CP催化剂的性能(T50、T90分别为376℃、457℃).
-
关键词:
- 汽车尾气净化 /
- 碳颗粒催化净化 /
- CeO2-MnOx催化剂 /
- 沉淀陈化
Abstract: CeO2-MnOx mixed oxides with a molar ratio of Ce:Mn=7:3 were prepared by precipitation ripening method, and labeled as Ce0.7Mn0.3Ox-PR. The catalytic soot oxidation activity of prepared Ce0.7Mn0.3Ox-PR was compared with the traditional commercial Ce0.7Mn0.3Ox soot oxidation catalyst (prepared by co-precipitation method, labeled as Ce0.7Mn0.3Ox-CP). Meanwhile, the catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS) and Raman spectra. Results displayed that the precipitation ripening could efficiently promote the growth of crystalline grain and stabilize the textual features of catalyst. For the Mn species, the precipitation ripening was beneficial for the generating of Mn4+, which was a promoting factor for the oxygen mobility of CeO2; furthermore, the precipitation ripening was favorable for Mn ions to enter into the CeO2 lattice and retarding the agglomeration of MnOx species over catalyst surface. Mn ions into CeO2 lattice were able to significantly enhance the amounts of lattice oxygen and oxygen vacancies of Ce0.7Mn0.3Ox-PR catalyst, and hence improving the catalytic soot oxidation activity of Ce0.7Mn0.3Ox-PR catalyst. Since lattice oxygen and oxygen vacancies were beneficial for the formation of active oxygen. Finally the catalytic activity tests showed that the light-off temperature (T50) and complete conversion temperature (T90) for soot oxidation of Ce0.7Mn0.3Ox-PR was about 362℃ and 419℃, respectively; which are obviously better than the traditional Ce0.7Mn0.3Ox-CP catalyst (T50 and T90 are 376℃ and 457℃, respectively). -
-
[1] ZHU L, YU J, WANG X. Oxidation treatment of diesel soot particulate on CexZr1-xO2[J]. Journal of Hazardous Materials, 2007, 140(1):205-210. [2] AMBROGIO M, SARACCO G, SPECCHIA V. Combining filtration and catalytic combustion in particulate traps for diesel exhaust treatment[J]. Chemical Engineering Science, 2001, 56(4):1613-1621. [3] CALLÉN M S, ITURMENDI A, LÓPEZ J M, et al. Source apportionment of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH) associated to airborne PM10 by a PMF model[J]. Environmental Science & Pollution Research, 2014, 21(3):2064-2076. [4] CIAMBELLI P, PALMA V, RUSSO P, et al. Deep filtration and catalytic oxidation:An effective way for soot removal[J]. Catalysis Today, 2002, 73(3):363-370. [5] 杨铮铮, 黎云祥, 廖运文, 等. Pt/SiO2-Al2O3抗硫型柴油车尾气净化氧化催化剂的制备及性能[J]. 环境化学, 2016, 35(8):1682-1689. YANG Z Z, LI Y X, LIAO Y W, et al. Preparation and properties of the Pt/SiO2-Al2O3 sulfur resistance diesel oxidation catalyst[J]. Environmental Chemistry, 2016, 35(8):1682-1689(in Chinese).
[6] YANG Z, LI J, ZHANG H, et al. Size-dependent CO and propylene oxidation activities of platinum nanoparticles on the monolithic Pt/TiO2-YOx diesel oxidation catalyst under simulative diesel exhaust conditions[J]. Catalysis Science & Technology, 2015, 5(4):2358-2365. [7] YANG Z Z, ZHANG N, CAO Y, et al. Effect of yttria in Pt/TiO2 on sulfur resistance diesel oxidation catalysts:Enhancement of low-temperature activity and stability[J].Catalysis Science & Technology, 2014, 4(9):3032-3043. [8] YANG Z Z, YANG Y, ZHAO M, et al. Enhanced sulfur resistance of Pt-Pd/CeO2-ZrO2-Al2O3 commercial diesel oxidation catalyst by SiO2 surface cladding[J]. Acta Physico-Chimica Sinica, 2014, 30(6):1187-1193. [9] 杨铮铮, 陈永东, 赵明, 等. 具有低SO2氧化活性的Pt/ZrxTi1-xO2柴油车氧化催化剂的制备及性能[J]. 催化学报, 2012, 33(5):819-826. YANG Z Z, CHEN Y D, ZHAO M,et al. Preparation and properties of Pt/ZrxTi1-xO2 catalysts with low-level SO2 oxidation activity for diesel oxidation[J]. Chinese Journal of Catalysis, 2012, 33:819-826(in Chinese).
[10] ZHANG N, YANG Z Z, CHEN Z, et al. Synthesis of sulfur-resistant TiO2-CeO2 composite and its catalytic performance in the oxidation of a soluble organic fraction from diesel exhaust[J]. Catalysts, 2018, 8(6):246. [11] JOHNSON T, JOSHI A. Review of vehicle engine efficiency and emissions[J]. SAE Int. J. Engines, 2018, 11(6):1307-1330. [12] MUL G, KAPTEIJN F, MOULIJN J A. Catalytic oxidation of model soot by metal chlorides[J]. Applied Catalysis B Environmental, 1997, 12(1):33-47. [13] 李永昕, 郭玉华, 冀永强. M/(MgO)<i>y(CeO2)(1-y) (MNi, Co, Cu)催化剂的催化甲烷燃烧性能[J]. 物理化学学报, 2005, 21(5):468-473. LI Y X, GUO Y H, JI Y Q. Catalytic activity of M/(MgO)y(CeO2)(1-y) (MNi, Co, Cu) catalysts for methane combustion[J]. Acta Physico-chimica Sinica, 2005, 21(5):468-473(in Chinese).
[14] OTSUKA K, WANG Y, SUNADA E, et al. Direct partial oxidation of methane to synthesis gas by cerium oxide[J]. Journal of Catalysis, 1998, 175(2):152-160. [15] JUNG C R, HAN J, NAM S W, et al. Selective oxidation of CO over CuO-CeO2 catalyst:Effect of calcination temperature[J]. Catalysis Today, 2004, 93-95(3):183-190. [16] HAMOUDI S, LARACHI F, ADNOT A, et al. Characterization of spent MnO2/CeO2 wet oxidation catalyst by TPO-MS, XPS, and S-SIMS[J]. Journal of Catalysis, 1999, 185(2):333-344. [17] LAMONIER C, PONCHEL A, D'HUYSSER A, et al. Studies of the cerium-metal-oxygen-hydrogen system (metal=Cu, Ni)[J]. Catalysis Today, 1999, 50(2):247-259. [18] KIM H Y, LEE H M, HENKELMAN G. CO oxidation mechanism on CeO2-supported Au nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(3):1560-1570. [19] KIM H Y, HENKELMAN G. CO Oxidation at the interface between doped CeO2 and supported Au nanoclusters[J]. Journal of Physical Chemistry Letters, 2012, 3(16):2194-2199. [20] WU X, LIU S, WENG D, et al. MnOx-CeO2-Al2O3 mixed oxides for soot oxidation:Activity and thermal stability[J]. Journal of Hazardous Materials, 2011, 187(1):283-290. [21] TANG Q, DU J, XIE B, et al. Rare earth metal modified three dimensionally ordered macroporous MnOx-CeO2 catalyst for diesel soot combustion[J]. Journal of Rare Earths, 2018,36(1):64-71. [22] YU X H, LI J M, WEI Y C, et al. Three-dimensionally ordered macroporous MnxCe1-xOδ and Pt/Mn0.5Ce0.5Oδ catalysts:Synthesis and Catalytic Performance for Soot Oxidation[J]. Industrial & Engineering Chemistry Research, 2014, 53(23):9653-9664. [23] MACHIDA M, UTO M, KUROGI D, et al. MnOx-CeO2 binary oxides for catalytic NOx sorption at low temperatures. Sorptive removal of NOx[J]. Chemistry of Materials, 2000, 12(10):3158-3164. [24] SHE Y, ZHENG Q, LI L, et al. Rare earth oxide modified CuO/CeO2 catalysts for the water-gas shift reaction[J]. International Journal of Hydrogen Energy, 2009, 34(21):8929-8936. [25] 赵晓兵, 靳超, 张跃, 等. Ce(1-x)MnxO(2-δ)-凹凸棒石(Ce(1-x)MnxO(2-δ)-ATP)纳米复合材料的制备及催化性能[J]. 中国有色金属学报,2011,21(7):1580-1586. ZHAO X B, JIN C, ZHANG Y, et al. Preparation and catalytic properties of Ce(1-x)MnxO(2-δ)-attapulgite nanocomposite materials[J]. Chinese Journal of Nonferrous Metals, 2011, 21(7):1580-1586(in Chinese).
[26] TERRIBILE D, TROVARELLI A, LEITENBURG C D, et al. Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria-zirconia solid solutions[J]. Catalysis Today, 1999, 47(1-4):133-140. [27] 赵明, 王海蓉, 陈山虎, 等. CeO2-ZrO2-Al2O3的制备及其负载钯三效催化剂的催化性能[J]. 催化学报, 2010, 31(4):429-434. ZHAO M, WANG H R, CHEN S H, et al. Preparation of CeO2-ZrO2-Al2O3 and catalytic performance of palladium-based three-way catalyst[J]. Chinese Journal of Catalysis, 2010, 31(4):429-434(in Chinese).
[28] WEI Y, WU Q, XIONG J, et al. Fabrication of ultrafine Pd nanoparticles on 3D ordered macroporous TiO2 for enhanced catalytic activity during diesel soot combustion[J]. Chinese Journal of Catalysis, 2018, 39(4):606-612. [29] BURROUGHS P, HAMNETT A, ORCHARD AF, et al. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium[J]. Journal of the Chemical Society Dalton Transactions, 1976, 17(17):1686-1698. [30] 楚英豪, 盖志谱, 王天泽, 等. Ce掺杂对Mn/ACN催化剂低温NH3-SCR脱硝活性的影响[J]. 工程科学与技术, 2015, 47(3):180-186. CHU Y H, GAI Z P, WANG T Z, et al. Effect of Ce doping on Mn/ACN catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(3):180-186(in Chinese).
[31] WU X, XU L, WENG D. The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/γ[J]. Applied Surface Science, 2004, 221(1):375-383. [32] LARSSON P O, ANDERSSON A. Complete oxidation of CO, ethanol, and ethyl acetate over copper oxide supported on titania and ceria modified titania[J]. Journal of Catalysis, 1998, 179(1):72-89. [33] ZHANG G, SHEN Z, MI L, et al. Synthesis and characterization of mesoporous ceria with hierarchical nanoarchitecture controlled by amino acids[J]. Journal of Physical Chemistry B, 2006, 110(51):25782-25790. [34] LUO J Y, MING M, XIANG L, et al. Mesoporous Co3O4-CeO2 and Pd/Co3O4-CeO2 catalysts:Synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation[J]. Journal of Catalysis, 2008, 254(2):310-324. [35] QI G, YANG R T, CHANG R. MnOx-CeO mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B Environmental, 2004, 51(2):93-106. [36] YANG Y, YANG Z, XU H, et al. Influence of La on CeO2-ZrO2 catalyst for oxidation of soluble organic fraction from diesel exhaust[J]. Acta Physico-Chimica Sinica, 2015, 31(12):2358-2365. [37] ZHAN W C, ZHANG X Y, GUO Y L, et al. Synthesis of mesoporous CeO2-MnOx binary oxides and their catalytic performances for CO oxidation[J]. Journal of Rare Earths, 2014, 32(2):146-152. [38] SUDARSANAM P, MALLESHAM B, REDDY P S, et al. Nano-Au/CeO2 catalysts for CO oxidation:Influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity[J]. Applied Catalysis B:Environmental, 2014, 144:900-908. [39] KATTA L, SUDARSANAM P, MALLESHAM B, et al. Preparation of silica supported ceria-lanthana solid solutions useful for synthesis of 4-methylpent-1-ene and dehydroacetic acid[J]. Catalysis Science & Technology, 2012, 2(5):995-1004. [40] HE J, REDDY G K, THIEL S W, et al. Ceria-modified manganese oxide/titania materials for removal of elemental and oxidized mercury from flue gas[J]. Journal of Physical Chemistry C, 2011, 115(49):24300-24309. [41] LIN X T, LI S J, HE H, et al. Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation[J]. Applied Catalysis B:Environmental, 2018, 223:91-102. [42] SIVACHANDIRAN L, THEVENET F, ROUSSEAU A. Isopropanol removal using MnXOY packed bed non-thermal plasma reactor:Comparison between continuous treatment and sequential sorption/regeneration[J]. Chemical Engineering Journal, 2015, 270:327-335. [43] LI H, QI G, TANA, et al. Low-temperature oxidation of ethanol over a Mn0.6Ce0.4O2 mixed oxide[J]. Applied Catalysis B Environmental, 2011, 103(1):54-61. [44] HE H, LIN X, LI S, et al. The key surface species and oxygen vacancies in MnOx(0.4)-CeO2 toward repeated soot oxidation[J]. Applied Catalysis B Environmental, 2018, 223:134-142. [45] CASAPU M, KRÖCHER O, MEHRING M, et al. Characterization of Nb-containing MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. Journal of Physical Chemistry C, 2010, 114(21):9791-9801. [46] YANG Z, NA Z, CAO Y, et al. Promotional effect of lanthana on the high-temperature thermal stability of Pt/TiO2 sulfur-resistant diesel oxidation catalysts[J]. Rsc Advances, 2017, 7(31):19318-19329. [47] RAMANA S, RAO B G, VENKATASWAMY P, et al. Nanostructured Mn-doped ceria solid solutions for efficient oxidation of vanillyl alcohol[J]. Journal of Molecular Catalysis A Chemical, 2016, 415:113-121. [48] ZHANG C, CHAO W, ZHAN W, et al. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts[J]. Applied Catalysis B Environmental, 2013, 129(3):509-516. [49] BUENO-LÓPEZ A, KRISHNA K, MAKKEE M, et al. Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2[J]. Journal of Catalysis, 2005, 230(1):237-248. [50] ANDANA T, PIUMETTI M, BENSAID S, et al. CO and Soot oxidation over Ce-Zr-Pr oxide catalysts[J]. Nanoscale Research Letters, 2016, 11(1):278. [51] SATO T, KOMANOYA T. Selective oxidation of alcohols with molecular oxygen catalyzed by Ru/MnOx/CeO under mild conditions[J]. Catalysis Communications, 2009, 10(7):1095-1098. [52] VENKATASWAMY P, JAMPAIAH D, RAO K N, et al. Nanostructured Ce0.7Mn0.3O2-δ and Ce0.7Fe0.3O2-δ solid solutions for diesel soot oxidation[J]. Applied Catalysis A General, 2014, 488:1-10. [53] LI K, HUA W, WEI Y, et al. Transformation of methane into synthesis gas using the redox property of Ce-Fe mixed oxides:Effect of calcination temperature[J]. International Journal of Hydrogen Energy, 2011, 36(5):3471-3482. [54] HE C, YU Y, CHEN C, et al. Facile preparation of 3D ordered mesoporous CuOx-CeO2 with notably enhanced efficiency for the low temperature oxidation of heteroatom-containing volatile organic compounds[J]. Rsc Advances, 2013, 3(42):19639-19656. [55] LIN F, WU X D, LIU S, et al. Preparation of MnOx-CeO2-Al2O3 mixed oxides for NOx-assisted soot oxidation:Activity, structure and thermal stability[J]. Chemical Engineering Journal, 2013, 226(24):105-112. [56] LIAO Y, FU M, CHEN L, et al. Catalytic oxidation of toluene over nanorod-structured Mn-Ce mixed oxides[J]. Catalysis Today, 2013, 216(6):220-228. [57] WU X, LIU S, WENG D, et al. MnOx-CeO2-Al2O3 mixed oxides for soot oxidation:activity and thermal stability[J]. Journal of Hazardous Materials, 2011, 187(1):283-290. [58] LIANG Q, WU X D, WENG D, et al. Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation[J]. Catalysis Today, 2008, 139(1):113-118. [59] SHAN W J, MA N, YANG J L, et al. Catalytic oxidation of soot particulates over MnOx-CeO2 oxides prepared by complexation-combustion method[J]. Journal of Natural Gas Chemistry, 2010, 19(1):86-90. -

计量
- 文章访问数: 1474
- HTML全文浏览数: 1474
- PDF下载数: 89
- 施引文献: 0