不同含磷化合物修复铅污染土壤后的人体健康风险评价

李岩, 尹乃毅, 都慧丽, 王鹏飞, 孙国新, 崔岩山. 不同含磷化合物修复铅污染土壤后的人体健康风险评价[J]. 环境化学, 2019, (7): 1446-1452. doi: 10.7524/j.issn.0254-6108.2018091103
引用本文: 李岩, 尹乃毅, 都慧丽, 王鹏飞, 孙国新, 崔岩山. 不同含磷化合物修复铅污染土壤后的人体健康风险评价[J]. 环境化学, 2019, (7): 1446-1452. doi: 10.7524/j.issn.0254-6108.2018091103
LI Yan, YIN Naiyi, DU Huili, WANG Pengfei, SUN Guoxin, CUI Yanshan. Human health risk assessment for lead contaminated soil after remediation with several phosphate compounds[J]. Environmental Chemistry, 2019, (7): 1446-1452. doi: 10.7524/j.issn.0254-6108.2018091103
Citation: LI Yan, YIN Naiyi, DU Huili, WANG Pengfei, SUN Guoxin, CUI Yanshan. Human health risk assessment for lead contaminated soil after remediation with several phosphate compounds[J]. Environmental Chemistry, 2019, (7): 1446-1452. doi: 10.7524/j.issn.0254-6108.2018091103

不同含磷化合物修复铅污染土壤后的人体健康风险评价

    通讯作者: 崔岩山, E-mail: cuiyanshan@ucas.edu.cn
  • 基金项目:

    国家自然科学基金(41571451)资助.

Human health risk assessment for lead contaminated soil after remediation with several phosphate compounds

    Corresponding author: CUI Yanshan, cuiyanshan@ucas.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41571451).
  • 摘要: 磷酸盐钝化铅是铅污染土壤的重要修复技术之一.但磷酸盐修复土壤铅污染后,土壤铅对人体的健康风险仍缺乏系统研究.本研究通过向铅污染土壤添加五种不同的含磷化合物(KH2PO4、NH4H2PO4、CaHPO4,植酸和卵磷脂),分析了其对铅污染土壤的钝化效果,运用in vitro和SHIME模型评估修复后土壤铅对人体的健康风险.结果表明,添加含磷化合物30 d后,五种处理均有效降低了铅的DTPA和CaCl2可提取态,分别降低了62.5%-66.5%和27.8%-49.5%,其中植酸和CaHPO4处理效果较好,卵磷脂处理效果较差.5种处理中,铅的生物可给性在胃、小肠和结肠阶段有显著差异,分别为8.67%-9.31%、0.88%-1.55%、2.06%-2.76%,由于受pH的影响,铅在胃阶段生物可给性最高且各处理之间差异不明显,在小肠阶段KH2PO4处理土壤铅的生物可给性最低,卵磷脂处理铅的生物可给性最高,结肠阶段NH4H2PO4处理土壤铅的生物可给性最低,卵磷脂处理铅的生物可给性最高.结肠阶段铅的生物可给性均高于小肠阶段的,可见肠道微生物促进了土壤中Pb的溶出,提高了铅的生物可给性,增加了人体的健康风险.在添加同等含量的含磷化合物修复铅污染土壤后,KH2PO4处理对人体健康风险最小,卵磷脂最大.
  • 加载中
  • [1] ARDUINI F, CALVO J Q, PALLESCHI G, et al. Bismuth-modified electrodes for lead detection[J]. Trac Trends in Analytical Chemistry, 2010, 29(11):1295-1304.
    [2] YAN L, KONG L, QU Z, et al. Magnetic biochar decorated with ZnS nanocrytals for Pb (Ⅱ) removal[J]. Acs Sustainable Chemistry & Engineering, 2015, 3(1):125-132.
    [3] 郑袁明, 陈同斌, 陈煌,等. 北京市不同土地利用方式下土壤铅的积累[J]. 地理学报, 2005, 60(5):791-797.

    ZHENG Y M, CHEN T B, CHEN H, et al. Lead accumulation in soils under different land use types in Beijing City[J]. Acta Geographica Sinica, 2005,60(5):791-797(in Chinese).

    [4] 白雁斌, 赵晓玉, 王天娇. 土壤铅污染修复技术研究进展及展望[J]. 新疆环境保护, 2012, 34(4):16-19.

    BAI Y B, ZHAO X Y, WANG T J. Progress and prospective in lead contaminated soil remediation technology[J]. Environmental Protection of Xinjiang, 2012, 34(4):16-19(in Chinese).

    [5] 佟亚欧, 金兰淑. 土壤铅污染现状及钝化修复技术探讨[J]. 农业科技与装备, 2010(6):31-32. TONG Y O, JIN L S. Discussion on the current soil lead pollution and inactivation restoring Technology[J]. Agricultural Science & Technology & Equipment, 2010

    (6):31-32(in Chinese).

    [6] 宋波, 曾炜铨, 陆素芬,等. 含磷材料在铅污染土壤修复中的应用[J]. 环境工程学报, 2015, 9(12):5649-5658.

    SONG B, ZENG W Q, LU S F, et al. Application of phosphorus materials in remediation of lead-contaminated soil[J]. Chinese Journal of Environmental Engineering, 2015(in Chinese).

    [7] MIRETZKY P, FERNANDEZ-CIRELLI A. Phosphates for Pb immobilization in soils:A review[J]. Environmental Chemistry Letters, 2008, 6(3):121-133.
    [8] 龙梅, 胡锋, 李辉信,等. 低成本含磷材料修复环境重金属污染的研究进展[J].环境污染治理技术与设备, 2006, 7(7):1-10.

    LONG M, HU F, LI X H, et al. Recent trends in the remediation of heavy metal-contaminated environments with low-cost phosphorus-containing materials[J]. Techniques & Equipment for Environmental Pollution Control, 2006, 7(7):1-10(in Chinese).

    [9] TANG X Y, ZHU Y G, CHEN S B, et al. Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb-contaminated soil using in vitro test[J]. Environment International, 2004, 30(4):531-537.
    [10] CAO X, MA L Q, CHEN M, et al. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site[J]. Environmental Science & Technology, 2002, 36(24):5296-5304.
    [11] 鲁如坤. 土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000. LU R K. Methods of soil agricultural chemistry analysis[M]. Beijing:Chinese Agricultural Science and Technology Press, 2000(in Chinese).
    [12] 唐翔宇, 朱永官. 土壤中重金属对人体生物有效性的体外试验评估[J]. 环境与健康杂志, 2004, 21(3):183-185.

    TANG X Y, ZHU Y G. Advances in in vitro tests in evaluating bioavailability of heavy metals in contaminated soil via oral intake[J]. Journal of Environment & Health, 2004, 21(3):183-185(in Chinese).

    [13] YIN N Y, ZHANG Z N, CAI X L, et al. In vitro method to assess soil arsenic metabolism by human gut microbiota:Arsenic speciation and distribution[J]. Environmental Science & Technology, 2015, 49(17):10675-10681.
    [14] 都慧丽, 尹乃毅, 张震南,等. 肠道微生物对土壤中铜、锌、锰生物可给性的影响[J]. 生态毒理学报, 2017, 12(3):301-308.

    DU H L, YIN N Y, ZHANG Z N, et al. Effect of human gut microbiota on bioaccessibility of soil Cu, Zn and Mn[J]. Asian Journal of Ecotoxicology, 2017, 12(3):301-308.(in Chinese).

    [15] 崔岩山, 陈晓晨. 土壤中镉的生物可给性及其对人体的健康风险评估[J]. 环境科学, 2010, 31(2):403-408.

    CUI Y S, CHEN X C. Bioaccessibility of soil cadmium and its health risk assessment[J]. Environmental Science, 2010, 31(2):403-408(in Chinese).

    [16] CAO X D, MA L, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9):3285-3291.
    [17] KHAN M J, JONES D L. Effect of composts, lime and diammonium phosphate on the phytoavailability of heavy metals in a copper mine tailing soil[J]. Pedosphere, 2009, 19(5):631-641.
    [18] XENIDIS A, STOURAITI C, PAPASSIOPI N. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron[J]. Journal of Hazardous Materials, 2010, 177(1):929-937.
    [19] LIN C W, LIAN J, FANG H H. Soil lead immobilization using phosphate rock[J]. Water Air & Soil Pollution, 2005, 161(1-4):113-123.
    [20] 周吉峙, 徐霞, 张怡,等. 铅羟基磷灰石的形成与稳定性[J]. 无机材料学报, 2009, 24(2):259-263.

    ZHOU J Z, XU X, ZHANG Y, et al. Synthesis and stability of lead-hydroxyapatite[J]. Journal of Inorganic Materials, 2009, 24(2):259-263(in Chinese).

    [21] HE M, SHI H, ZHAO X, et al. Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite[J]. Procedia Environmental Sciences, 2013, 18(18):657-665.
    [22] KUMPIENE J, LAGERKVIST A, MAURICE C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review[J]. Waste Management, 2008, 28(1):215-225.
    [23] ZHANG J G, PROVIS J L, FENG D W, et al. Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+[J]. Journal of Hazardous Materials, 2008, 157(2):587-598.
    [24] AND S S, MCBRIDE M, HENDERSHOT W. Lead phosphate solubility in water and soil suspensions[J]. Environmental Science & Technology, 1998, 32(3):388-393.
    [25] ZHANG P, RYAN J A, YANG J. In vitro soil Pb solubility in the presence of hydroxyapatite[J]. Environmental Science & Technology, 1998, 32(32):2763-2768.
    [26] RUBY M V, SCHOOF R, BRATTIN W, et al. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J]. Environmental Science & Technology, 1999, 33(21):3697-3705.
    [27] SCHRODER L, BASTA N T, CASTEEL S W, et al. Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils[J]. Journal of Environmental Quality, 2004, 33(2):513-521.
    [28] 崔岩山, 陈晓晨, 朱永官. 利用3种in vitro方法比较研究污染土壤中铅、砷生物可给性[J]. 农业环境科学学报, 2008, 1(2):414-419.

    CUI Y S, CHEN X C, ZHU Y G. Comparison of three in vitro methods to study the bioaccessibility of soil lead and arsenic[J]. Journal of Agro-Environment Science, 2008, 1(2):414-419(in Chinese).

    [29] 付瑾, 崔岩山. In vitro系统评价胃肠液pH及土液比对铅、镉、砷生物可给性的影响[J]. 农业环境科学学报, 2012, 31(2):245-251.

    FU J, CUI Y S. In vitro model system to evaluate the influence of pH and soil-gastric/intestinal juices ratio on bioaccessibility of Pb, Cd and As in two typical contaminated soils[J]. Journal of Agro-Environment Science, 2012, 31(2):245-251(in Chinese).

    [30] WRAGG J, CAVE M, BASTA N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. Science of the Total Environment, 2011, 409(19):4016-4030.
    [31] 尹乃毅, 都慧丽, 张震南,等. 应用SHIME模型研究肠道微生物对土壤中镉、铬、镍生物可给性的影响[J]. 环境科学, 2016, 37(6):2353-2358.

    YIN N Y, DU H L, ZHANG Z N, et al. Effects of human gut microbiota on bioaccessibility of soil Cd, Cr and Ni using SHIME model[J]. Environmental Science, 2016, 37(6):2353-2358(in Chinese).

    [32] VAND W T, GALLAWA C M, KUBACHKA K M, et al. Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils[J]. Environmental Health Perspectives, 2010, 118(7):1004-1009.
  • 加载中
计量
  • 文章访问数:  1559
  • HTML全文浏览数:  1559
  • PDF下载数:  48
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-11
李岩, 尹乃毅, 都慧丽, 王鹏飞, 孙国新, 崔岩山. 不同含磷化合物修复铅污染土壤后的人体健康风险评价[J]. 环境化学, 2019, (7): 1446-1452. doi: 10.7524/j.issn.0254-6108.2018091103
引用本文: 李岩, 尹乃毅, 都慧丽, 王鹏飞, 孙国新, 崔岩山. 不同含磷化合物修复铅污染土壤后的人体健康风险评价[J]. 环境化学, 2019, (7): 1446-1452. doi: 10.7524/j.issn.0254-6108.2018091103
LI Yan, YIN Naiyi, DU Huili, WANG Pengfei, SUN Guoxin, CUI Yanshan. Human health risk assessment for lead contaminated soil after remediation with several phosphate compounds[J]. Environmental Chemistry, 2019, (7): 1446-1452. doi: 10.7524/j.issn.0254-6108.2018091103
Citation: LI Yan, YIN Naiyi, DU Huili, WANG Pengfei, SUN Guoxin, CUI Yanshan. Human health risk assessment for lead contaminated soil after remediation with several phosphate compounds[J]. Environmental Chemistry, 2019, (7): 1446-1452. doi: 10.7524/j.issn.0254-6108.2018091103

不同含磷化合物修复铅污染土壤后的人体健康风险评价

    通讯作者: 崔岩山, E-mail: cuiyanshan@ucas.edu.cn
  • 1. 中国科学院大学中丹学院, 北京, 101408;
  • 2. 中国科学院大学资源与环境学院, 北京, 101408;
  • 3. 中国科学院生态环境研究中心, 北京, 100085
基金项目:

国家自然科学基金(41571451)资助.

摘要: 磷酸盐钝化铅是铅污染土壤的重要修复技术之一.但磷酸盐修复土壤铅污染后,土壤铅对人体的健康风险仍缺乏系统研究.本研究通过向铅污染土壤添加五种不同的含磷化合物(KH2PO4、NH4H2PO4、CaHPO4,植酸和卵磷脂),分析了其对铅污染土壤的钝化效果,运用in vitro和SHIME模型评估修复后土壤铅对人体的健康风险.结果表明,添加含磷化合物30 d后,五种处理均有效降低了铅的DTPA和CaCl2可提取态,分别降低了62.5%-66.5%和27.8%-49.5%,其中植酸和CaHPO4处理效果较好,卵磷脂处理效果较差.5种处理中,铅的生物可给性在胃、小肠和结肠阶段有显著差异,分别为8.67%-9.31%、0.88%-1.55%、2.06%-2.76%,由于受pH的影响,铅在胃阶段生物可给性最高且各处理之间差异不明显,在小肠阶段KH2PO4处理土壤铅的生物可给性最低,卵磷脂处理铅的生物可给性最高,结肠阶段NH4H2PO4处理土壤铅的生物可给性最低,卵磷脂处理铅的生物可给性最高.结肠阶段铅的生物可给性均高于小肠阶段的,可见肠道微生物促进了土壤中Pb的溶出,提高了铅的生物可给性,增加了人体的健康风险.在添加同等含量的含磷化合物修复铅污染土壤后,KH2PO4处理对人体健康风险最小,卵磷脂最大.

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回