滇池沉积物生物炭的热稳定性及化学稳定性特征
Thermal and chemical stability of biochars derived from sediment in Dianchi Lake
-
摘要: 在200和500℃制备滇池沉积物(泥炭土和草海底泥)生物炭,采用热重分析法和氧化剂氧化法,分别研究其热稳定性和化学稳定性,为判断沉积物生物炭的寿命、指导其应用提供数据和理论基础.研究显示,泥炭土和草海底泥中有机组分的损失主要发生在500℃烧制过程(分别为40%和30%);泥炭土和草海底泥热解后灰分含量分别从44.35%、58.25%升高到58.78%、70.05%(500℃),且脂肪性减弱而芳香性增强.随烧制温度提高,碳结构更加致密,沉积物生物炭热稳定性显著提高.不同温度生物炭的化学稳定性未表现出明显差异,是因为大量的灰分对有机组分提供了较强的保护作用,致使原料和低温生物炭也具有较强的化学稳定性.草海底泥及其生物炭因为灰分含量较高、芳香性较强,热稳定性高于泥炭土.本研究指出,沉积物生物炭稳定性规律不同于传统生物质生物炭,灰分可以明显提高生物炭抵抗环境老化的能力.Abstract: Biochars were prepared at 200 and 500℃ from two types of Dianchi Lake sediments (peat soil and Caohai sediment). Thermal and chemical stability of the biochars were tested by thermogravimetric analysis and oxidation method, respectively, so as to understand their persistence and guide practical applications of sediment biochars. The main organic matter loss of peat soil and Caohai sediment (40% and 30%, respectively) occurred at 500℃. Their ash contents increased from 44.35% and 58.25% to 58.78% and 70.05%, respectively, with enhanced aliphaticity but weakened aromaticity. After sintering, thermal stability of the sediment biochars improved significantly due to the condensed carbon structure. The series sintering temperatures did not affect the chemical stability of biochars, because a lot of ash provided a strong protection for organic carbon. Owing to high content of ash and high aromaticity, the thermal stability of Caohai sediment biochars was higher than that of the peat sediment. This study indicated that the stability of sediment biochars is different from that of traditional biomass biochars due to the high ash content of the sediment biochars.
-
Key words:
- sediment /
- biochar /
- ash /
- thermal stability /
- chemical stability
-
-
[1] 唐彤芝, 吴月龙, 丛建, 等. 河湖清淤吹填土固结硬化及生态处治效果[J]. 水利水运工程学报, 2017(2):1-9. TANG T Z, WU Y L, CONG J, et al. Hardening of hydraulic fill dredged from rivers & lakes and its ecological treatment effect[J]. Hydro-Science and Engineering, 2017 (2):1-9(in Chinese).
[2] WANG L, CHEN L, TSANG D, et al. Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization[J]. Science of the Total Environment, 2018, 631:1321-1327. [3] [4] AMELOOT N, DE NEVE S, JEGAJEEVAGAN K, et al. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils[J]. Soil Biology and Biochemistry, 2013, 57:401-410. [5] 王耀, 梅向阳, 段正洋, 等. 生物炭及其复合材料吸附重金属离子的研究进展[J]. 材料导报, 2017, 31(19):135-143. WANG Y, MEI X Y, DUAN Z Y, et al. Advances in adsorption of heavy metals ions by biochar and its composites[J]. Materials Review:A review, 2017, 31(19):135-143(in Chinese).
[6] QIAN L, CHEN M, CHEN B. Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes[J]. Journal of Soils and Sediments, 2015, 15(5):1130-1138. [7] 文方园, 陈建, 田路萍, 等. 过氧化氢氧化对生物炭表面性质的改变及其对双酚A吸附的影响[J]. 生态毒理学报, 2016, 11(2):628-635. WEN F Y, CHEN J, TIAN L P, et al. Chemical oxidation of biochars and the impact on bisphenol A sorption[J]. Asian Journal of Ecotoxicology, 2016, 11(2):628-635(in Chinese).
[8] 田路萍, 常兆峰, 王朋, 等. 利用苯多酸生物标记物表征生物炭的含量及特性[J]. 环境化学, 2017, 36(4):738-744. TIAN L P, CHANG Z F, WANG P, et al. Characterization of biochars properties with benzene polycarboxylic and biomarker[J]. Environmental Chemistry, 2017, 36(4):738-744(in Chinese).
[9] LIAN F, XING B. Black carbon (biochar) in water/soil environments:Molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51(23):13517-13532. [10] SINGH B P, COWIE A L, SMERNIK R J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature[J]. Environmental Science & Technology, 2012, 46(21):11770-11778. [11] MCBEATH A V, SMERNIK R J, KRULL E S, et al. The influence of feedstock and production temperature on biochar carbon chemistry:A solid-state 13C NMR study[J]. Biomass and Bioenergy, 2014, 60:121-129. [12] LUO L, XU C, CHEN Z, et al. Properties of biomass-derived biochars:Combined effects of operating conditions and biomass types[J]. Bioresource Technology, 2015, 192:83-89. [13] CHEN K Y, CHEN T Y, CHAN Y T, et al. Stabilization of natural organic matter by short-range-order iron hydroxides[J]. Environmental Science & Technology, 2016, 50(23):12612-12620. [14] HAN L, SUN K, JIN J, et al. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J]. Soil Biology and Biochemistry, 2016, 94:107-121. [15] YANG Y, SUN K, HAN L F, et al. Effect of minerals on the stability of biochar[J]. Chemosphere, 2018, 204:310-317. [16] 陈静文, 张迪, 吴敏, 等. 两类生物炭的抗氧化性比较[J]. 环境化学, 2014, 33(6):943-948. CHEN J W, ZHANG D, WU M, et al. Comparison of oxidation resistance of two biochars[J]. Environmental Chemistry, 2014, 33(6):943-948(in Chinese).
[17] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4):1247-1253. [18] HAN L, RO K S, WANG Y, et al. Oxidation resistance of biochars as a function of feedstock and pyrolysis condition[J]. Science of the Total Environment, 2018, 616-617:335-344. [19] 高凯芳, 简敏菲, 余厚平, 等. 裂解温度对稻秆与稻壳制备生物炭表面官能团的影响[J]. 环境化学, 2016, 35(8):1663-1669. GAO K F, JIAN M F, YU H P, et al. Effects of pyrolysis temperatures on the biochars and its surface functional groups made from rice straw and rice husk[J]. Environmental Chemistry, 2016, 35(8):1663-1669(in Chinese).
[20] XIAO X, CHEN Z, CHEN B. H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials[J]. Scientific Reports, 2016, 6:1-13. [21] S K, F Z, A D, et al. Characterization of slow pyrolysis biochars:effects of feedstocks and pyrolysis temperature on biochar properties[J]. Journal of Environmental Quality, 2012, 41(4):990-1000. [22] 林庆毅, 姜存仓, 张梦阳. 生物炭老化后理化性质及微观结构的表征[J]. 环境化学, 2017, 36(10):2107-2114. LIN Q Y, JIANG C C, ZHANG M Y. Characterization of the physical and chemical structures of biochar under simulated aging condition[J]. Environmental Chemistry, 2017, 36(10), 2107-2114(in Chinese).
[23] CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107:419-428. [24] QIU M, SUN K, JIN J, et al. Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars:The effect of feedstock, temperature, minerals, and properties[J]. Environmental Pollution, 2015, 206:298-305. [25] YANG F, ZHAO L, GAO B, et al. The interfacial behavior between biochar and soil minerals and its effect on biochar stability[J]. Environmental Science & Technology, 2016, 50(5):2264-2271. [26] CROMBIE K, MAŠEK O, SOHI S P, et al. The effect of pyrolysis conditions on biochar stability as determined by three methods[J]. Global Change Biology Bioenergy, 2013, 5(2):122-131. [27] FANG J, GAO B, CHEN J, et al. Hydrochars derived from plant biomass under various conditions:Characterization and potential applications and impacts[J]. Chemical Engineering Journal, 2015, 267:253-259. [28] TADINI A M, NICOLODELLI G, SENESI G S, et al. Soil organic matter in podzol horizons of the Amazon region:Humification, recalcitrance, and dating[J]. Science of the Total Environment, 2018, 613-614:160-167. [29] SUN K, KANG M, ZHANG Z, et al. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene[J]. Environmental Science & Technology, 2013, 47(20):11473-11481. [30] LUTFALLA S, CHENU C, BARR P. Are chemical oxidation methods relevant to isolate a soil pool of centennial carbon?[J]. Biogeochemistry, 2013, 118(1-3):135-139. [31] 华建良, 赵吉, 杨晶晶, 等. 水合锰氧化物对水中溴酚的去除及脱溴效能[J]. 中国给水排水, 2018, 34(5):44-46. HUA J L, ZHAO J, YANG J J, et al. Removal of bromophenols and debromination by hydrated manganese oxide[J]. China Water & Wastewater, 2018, 34(5):44-46(in Chinese).
-

计量
- 文章访问数: 1750
- HTML全文浏览数: 1716
- PDF下载数: 54
- 施引文献: 0