滇池沉积物生物炭的热稳定性及化学稳定性特征

石林, 陈静文, 李浩, 王朋, 张迪. 滇池沉积物生物炭的热稳定性及化学稳定性特征[J]. 环境化学, 2018, 37(11): 2515-2521. doi: 10.7524/j.issn.0254-6108.2018062202
引用本文: 石林, 陈静文, 李浩, 王朋, 张迪. 滇池沉积物生物炭的热稳定性及化学稳定性特征[J]. 环境化学, 2018, 37(11): 2515-2521. doi: 10.7524/j.issn.0254-6108.2018062202
SHI Lin, CHEN Jingwen, LI Hao, WANG Peng, ZHANG Di. Thermal and chemical stability of biochars derived from sediment in Dianchi Lake[J]. Environmental Chemistry, 2018, 37(11): 2515-2521. doi: 10.7524/j.issn.0254-6108.2018062202
Citation: SHI Lin, CHEN Jingwen, LI Hao, WANG Peng, ZHANG Di. Thermal and chemical stability of biochars derived from sediment in Dianchi Lake[J]. Environmental Chemistry, 2018, 37(11): 2515-2521. doi: 10.7524/j.issn.0254-6108.2018062202

滇池沉积物生物炭的热稳定性及化学稳定性特征

  • 基金项目:

    国家自然科学基金(41663014),云南省中青年学术和技术带头人项目(2018HB008)和中国博士后科学基金(2017M610615)资助.

Thermal and chemical stability of biochars derived from sediment in Dianchi Lake

  • Fund Project: Supported by National Natural Science Foundation of China (41663014), Yunnan Youth Academic and Technical Leader project (2018HB008) and China Postdoctoral Scientific Foundation (2017M610615).
  • 摘要: 在200和500℃制备滇池沉积物(泥炭土和草海底泥)生物炭,采用热重分析法和氧化剂氧化法,分别研究其热稳定性和化学稳定性,为判断沉积物生物炭的寿命、指导其应用提供数据和理论基础.研究显示,泥炭土和草海底泥中有机组分的损失主要发生在500℃烧制过程(分别为40%和30%);泥炭土和草海底泥热解后灰分含量分别从44.35%、58.25%升高到58.78%、70.05%(500℃),且脂肪性减弱而芳香性增强.随烧制温度提高,碳结构更加致密,沉积物生物炭热稳定性显著提高.不同温度生物炭的化学稳定性未表现出明显差异,是因为大量的灰分对有机组分提供了较强的保护作用,致使原料和低温生物炭也具有较强的化学稳定性.草海底泥及其生物炭因为灰分含量较高、芳香性较强,热稳定性高于泥炭土.本研究指出,沉积物生物炭稳定性规律不同于传统生物质生物炭,灰分可以明显提高生物炭抵抗环境老化的能力.
  • 加载中
  • [1] 唐彤芝, 吴月龙, 丛建, 等. 河湖清淤吹填土固结硬化及生态处治效果[J]. 水利水运工程学报, 2017(2):1-9. TANG T Z, WU Y L, CONG J, et al. Hardening of hydraulic fill dredged from rivers & lakes and its ecological treatment effect[J]. Hydro-Science and Engineering, 2017

    (2):1-9(in Chinese).

    [2] WANG L, CHEN L, TSANG D, et al. Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization[J]. Science of the Total Environment, 2018, 631:1321-1327.
    [3]
    [4] AMELOOT N, DE NEVE S, JEGAJEEVAGAN K, et al. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils[J]. Soil Biology and Biochemistry, 2013, 57:401-410.
    [5] 王耀, 梅向阳, 段正洋, 等. 生物炭及其复合材料吸附重金属离子的研究进展[J]. 材料导报, 2017, 31(19):135-143.

    WANG Y, MEI X Y, DUAN Z Y, et al. Advances in adsorption of heavy metals ions by biochar and its composites[J]. Materials Review:A review, 2017, 31(19):135-143(in Chinese).

    [6] QIAN L, CHEN M, CHEN B. Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes[J]. Journal of Soils and Sediments, 2015, 15(5):1130-1138.
    [7] 文方园, 陈建, 田路萍, 等. 过氧化氢氧化对生物炭表面性质的改变及其对双酚A吸附的影响[J]. 生态毒理学报, 2016, 11(2):628-635.

    WEN F Y, CHEN J, TIAN L P, et al. Chemical oxidation of biochars and the impact on bisphenol A sorption[J]. Asian Journal of Ecotoxicology, 2016, 11(2):628-635(in Chinese).

    [8] 田路萍, 常兆峰, 王朋, 等. 利用苯多酸生物标记物表征生物炭的含量及特性[J]. 环境化学, 2017, 36(4):738-744.

    TIAN L P, CHANG Z F, WANG P, et al. Characterization of biochars properties with benzene polycarboxylic and biomarker[J]. Environmental Chemistry, 2017, 36(4):738-744(in Chinese).

    [9] LIAN F, XING B. Black carbon (biochar) in water/soil environments:Molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51(23):13517-13532.
    [10] SINGH B P, COWIE A L, SMERNIK R J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature[J]. Environmental Science & Technology, 2012, 46(21):11770-11778.
    [11] MCBEATH A V, SMERNIK R J, KRULL E S, et al. The influence of feedstock and production temperature on biochar carbon chemistry:A solid-state 13C NMR study[J]. Biomass and Bioenergy, 2014, 60:121-129.
    [12] LUO L, XU C, CHEN Z, et al. Properties of biomass-derived biochars:Combined effects of operating conditions and biomass types[J]. Bioresource Technology, 2015, 192:83-89.
    [13] CHEN K Y, CHEN T Y, CHAN Y T, et al. Stabilization of natural organic matter by short-range-order iron hydroxides[J]. Environmental Science & Technology, 2016, 50(23):12612-12620.
    [14] HAN L, SUN K, JIN J, et al. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J]. Soil Biology and Biochemistry, 2016, 94:107-121.
    [15] YANG Y, SUN K, HAN L F, et al. Effect of minerals on the stability of biochar[J]. Chemosphere, 2018, 204:310-317.
    [16] 陈静文, 张迪, 吴敏, 等. 两类生物炭的抗氧化性比较[J]. 环境化学, 2014, 33(6):943-948.

    CHEN J W, ZHANG D, WU M, et al. Comparison of oxidation resistance of two biochars[J]. Environmental Chemistry, 2014, 33(6):943-948(in Chinese).

    [17] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4):1247-1253.
    [18] HAN L, RO K S, WANG Y, et al. Oxidation resistance of biochars as a function of feedstock and pyrolysis condition[J]. Science of the Total Environment, 2018, 616-617:335-344.
    [19] 高凯芳, 简敏菲, 余厚平, 等. 裂解温度对稻秆与稻壳制备生物炭表面官能团的影响[J]. 环境化学, 2016, 35(8):1663-1669.

    GAO K F, JIAN M F, YU H P, et al. Effects of pyrolysis temperatures on the biochars and its surface functional groups made from rice straw and rice husk[J]. Environmental Chemistry, 2016, 35(8):1663-1669(in Chinese).

    [20] XIAO X, CHEN Z, CHEN B. H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials[J]. Scientific Reports, 2016, 6:1-13.
    [21] S K, F Z, A D, et al. Characterization of slow pyrolysis biochars:effects of feedstocks and pyrolysis temperature on biochar properties[J]. Journal of Environmental Quality, 2012, 41(4):990-1000.
    [22] 林庆毅, 姜存仓, 张梦阳. 生物炭老化后理化性质及微观结构的表征[J]. 环境化学, 2017, 36(10):2107-2114.

    LIN Q Y, JIANG C C, ZHANG M Y. Characterization of the physical and chemical structures of biochar under simulated aging condition[J]. Environmental Chemistry, 2017, 36(10), 2107-2114(in Chinese).

    [23] CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107:419-428.
    [24] QIU M, SUN K, JIN J, et al. Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars:The effect of feedstock, temperature, minerals, and properties[J]. Environmental Pollution, 2015, 206:298-305.
    [25] YANG F, ZHAO L, GAO B, et al. The interfacial behavior between biochar and soil minerals and its effect on biochar stability[J]. Environmental Science & Technology, 2016, 50(5):2264-2271.
    [26] CROMBIE K, MAŠEK O, SOHI S P, et al. The effect of pyrolysis conditions on biochar stability as determined by three methods[J]. Global Change Biology Bioenergy, 2013, 5(2):122-131.
    [27] FANG J, GAO B, CHEN J, et al. Hydrochars derived from plant biomass under various conditions:Characterization and potential applications and impacts[J]. Chemical Engineering Journal, 2015, 267:253-259.
    [28] TADINI A M, NICOLODELLI G, SENESI G S, et al. Soil organic matter in podzol horizons of the Amazon region:Humification, recalcitrance, and dating[J]. Science of the Total Environment, 2018, 613-614:160-167.
    [29] SUN K, KANG M, ZHANG Z, et al. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene[J]. Environmental Science & Technology, 2013, 47(20):11473-11481.
    [30] LUTFALLA S, CHENU C, BARR P. Are chemical oxidation methods relevant to isolate a soil pool of centennial carbon?[J]. Biogeochemistry, 2013, 118(1-3):135-139.
    [31] 华建良, 赵吉, 杨晶晶, 等. 水合锰氧化物对水中溴酚的去除及脱溴效能[J]. 中国给水排水, 2018, 34(5):44-46.

    HUA J L, ZHAO J, YANG J J, et al. Removal of bromophenols and debromination by hydrated manganese oxide[J]. China Water & Wastewater, 2018, 34(5):44-46(in Chinese).

  • 加载中
计量
  • 文章访问数:  1750
  • HTML全文浏览数:  1716
  • PDF下载数:  54
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-06-22
  • 刊出日期:  2018-11-15
石林, 陈静文, 李浩, 王朋, 张迪. 滇池沉积物生物炭的热稳定性及化学稳定性特征[J]. 环境化学, 2018, 37(11): 2515-2521. doi: 10.7524/j.issn.0254-6108.2018062202
引用本文: 石林, 陈静文, 李浩, 王朋, 张迪. 滇池沉积物生物炭的热稳定性及化学稳定性特征[J]. 环境化学, 2018, 37(11): 2515-2521. doi: 10.7524/j.issn.0254-6108.2018062202
SHI Lin, CHEN Jingwen, LI Hao, WANG Peng, ZHANG Di. Thermal and chemical stability of biochars derived from sediment in Dianchi Lake[J]. Environmental Chemistry, 2018, 37(11): 2515-2521. doi: 10.7524/j.issn.0254-6108.2018062202
Citation: SHI Lin, CHEN Jingwen, LI Hao, WANG Peng, ZHANG Di. Thermal and chemical stability of biochars derived from sediment in Dianchi Lake[J]. Environmental Chemistry, 2018, 37(11): 2515-2521. doi: 10.7524/j.issn.0254-6108.2018062202

滇池沉积物生物炭的热稳定性及化学稳定性特征

  • 1.  昆明理工大学环境科学与工程学院, 昆明, 650500;
  • 2.  云南省土壤固碳与污染控制重点实验室, 昆明, 650500
基金项目:

国家自然科学基金(41663014),云南省中青年学术和技术带头人项目(2018HB008)和中国博士后科学基金(2017M610615)资助.

摘要: 在200和500℃制备滇池沉积物(泥炭土和草海底泥)生物炭,采用热重分析法和氧化剂氧化法,分别研究其热稳定性和化学稳定性,为判断沉积物生物炭的寿命、指导其应用提供数据和理论基础.研究显示,泥炭土和草海底泥中有机组分的损失主要发生在500℃烧制过程(分别为40%和30%);泥炭土和草海底泥热解后灰分含量分别从44.35%、58.25%升高到58.78%、70.05%(500℃),且脂肪性减弱而芳香性增强.随烧制温度提高,碳结构更加致密,沉积物生物炭热稳定性显著提高.不同温度生物炭的化学稳定性未表现出明显差异,是因为大量的灰分对有机组分提供了较强的保护作用,致使原料和低温生物炭也具有较强的化学稳定性.草海底泥及其生物炭因为灰分含量较高、芳香性较强,热稳定性高于泥炭土.本研究指出,沉积物生物炭稳定性规律不同于传统生物质生物炭,灰分可以明显提高生物炭抵抗环境老化的能力.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回