大环多胺镍配合物催化过氧化氢降解碱性品红催化性能与机理
Catalytic performance and mechanism of nikle chloride hexahydrate in basic fuchsin degradation
-
摘要: 以大环多胺镍配合物[NiL](ClO4)2为催化剂(L=1,8-二甲基-1,3,6,8,10,13六氮杂十四烷),H2O2为氧化剂,碱性品红为底物,研究了催化剂用量、氧化剂投入量、底物浓度、反应溶液pH值、反应温度、常见阴离子和天然有机物对催化反应效率的影响.结果表明,反应体系pH=6,催化剂浓度200 μmol·L-1,碱性品红浓度15 mg·L-1,氧化剂投入量0.12 mol·L-1,在50℃下反应催化速率达最大值,10 min内碱性品红脱色率96.7%.通过自由基淬灭实验和电子顺磁共振测试发现[NiL](ClO4)2-H2O2反应体系中主要起氧化降解作用的自由基是O2-·,并推测反应机理为:过氧化氢与大环多胺镍配位化合物的中心离子镍配位,形成一个五配位的配位化合物,配位化合物在溶液中分解能给出超氧离子,超氧离子降解碱性品红.Abstract: Nikle chloride hexahydrate[NiL](ClO4)2 was used as catalyst for basic fuchsin (BF) degrodation in the present of H2O2. The effects of catalyst and H2O2 dosage, substrate (BF) concentration, pH and temperature on BF removal were optimized, and impacts of the common anions and natural organic matters on BF degradation were investigated. It was found that[NiL](ClO4)2 had a great catalytic capacity on BF removal and the decoloration rate reached 96.7% in 10 min under the optimal conditions at 50℃, pH=6,[NiL](ClO4)2, H2O2 and BF concentration of 200 μmol·L-1, 0.12 mol·L-1 and 15 mg·L-1, respectively. Moreover, ESR and radical quenching tests indicated that O2-·radicals were the main contributing radicals generated in the[NiL](ClO4)2-H2O2 system which could further degrade BF or other dyes into smaller molecules. The reacion mechanism was proposed as follows. Pentamethene coordination compound was formed through the coordination process of H2O2 with the central nickel ion of nikle chloride hexahydrate, and the coordination compounds could stimulate the generation of O2-·radicals, which could further degradate BF in aqueous solution.
-
-
[1] BAYRAMOGLU G, ALTINATAS B, ARICA M Y.Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin[J].Chemical Engineering Journal, 2009,152(2-3):339-346. [2] HUANG L H, KONG J J, WANG W L,et al. Study on Fe(Ⅲ) and Mn(Ⅱ) modified activated carbons derived from zizania latifolia to removal basic fuchsin[J].Desalination,2012,286:268-276. [3] ANDREOZZI R, CAPRIO V, INSOLA A,et al.Advanced oxidation processes (AOP) for water purification and recovery[J].Catalysis Today,1999,53(1):51-59. [4] LI Y M, LU Y Q.Photo-Fenton discoloration of Azo dye X-3B over pillared bentonites containing iron[J].Journal of Hazardous Materials,2006,132(2-3):196-201. [5] AKOLEKAR D B, BHARGAVA S K, SHIRGOANKAR I,et al.Catalytic wet oxidation:An environmental solution for organic pollutant removal from paper and pulp industrial waste liquor[J].Applied Catalysis,2002,236(1-2):255-262. [6] 杜鸿章,戴锡海,王斌,等.催化湿式氧化法治理H-酸母液废水的研究[J].工业水处理杂志,2004,24(9):25-27 ,42. DU H Z,DAI X H,WANG B,et al.Treatment of H-acid industrial wastewater by catalytic wet oxidation[J].Industrial Water Treatment, 2004,24(9):25-27,42(in Chinese).
[7] 赵彬侠,张小里,李红亚,等.湿式氧化吡虫啉农药生产废水的MnOx-CeO2催化剂性能研究[J].高等学校化学学报,2009,30(6):965-970. ZHAO B X, ZHANG X L, LI H Y, et al. Study on the performance of MnOx-CeO2 catalyst in the production of wet imidacloprid pesticide[J].Chemical journal of China University,2009,30(6):965-970(in Chinese).
[8] GOKULAKRISHNAN S, PARAKH P, PRAKASH H. Degradation of Malachite green by potassium persulphate, its enhancement by 1, 8-dimethyl-1,3,6,8,10, 13-hexaazacyclotetradecane nickel (Ⅱ) perchlorate complex, and removal of antibacterial activity[J]. Journal of Hazardous Materials, 2012, 213:19-27. [9] SUH M P,KANG S.ChemInform abstract:Synthesis and properties of nickel(Ⅱ) and copper(Ⅱ) complexes of 14-membered hexaaza macrocycles,1,8-Dimethyl-and 1,8-Diethyl-1,3,6,8,10,13-hexaazacyclotetradecane[J].Inorganic Chemistry,1988,19(46):67-72. [10] HUANG K C,COUTTENYE R A,HOAG G E.Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether(MTBE)[J].Chemosphere,2002,49(4):413-420. [11] 杜肖哲.基于热活化过硫酸盐新型高级氧化技术深度处理水中对氯苯胺的研究[D].广州:华南理工大学,2012:27-29. DU X Z.Degradation of p-chloroaniline in aqueous solution with advanced oxidation technology based on heat-assisted persulfate[D]. Guangzhou:South China University of Technology,2012:27 -29(in Chinese).
[12] CHEN W, WESTERHOFF P,LEENHEER J A,et al.Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environ Sci Technol, 2003, 37:5701-5710. [13] GLAZA W H. Drinking-water treatment with ozone[J].Environmental Science & Technology,1987,21(3):224-230. [14] MA J, GRAHAM N J D.Degradation of atrazine by manganese-catalysed ozonation-influence of radical scavengers[J].Water Research, 2000,34(15):3822-3828. [15] ZHANG L L, NIE Y L, HU C, et al.Decolorization of methylene blue in layered manganese oxide suspension with H2O2[J].Journal of Hazardous Materials,2011,190(1-3):780-785. [16] LOVECHIO F V, GORE E S, BUSCH D H. The oxidation and reduction behavior of macrocyclic complexes of nickel electron spin resonance studies[J].Am Chem Soc,1974,96:3109-3118. [17] SUH M P,KANG S.Synthesis and Properties of nickel(Ⅱ) and copper(Ⅱ) complexes of 14-membered hexaaza macrocycles, 1,8-dimethyl-and 1,8-diethyl-1,3,6,8,10,13-hexaazacyclotetradecane[J]. Inorganic Chemistry, 1988,27:2544-2546. [18] HAILU S L, NAIR B U,REDI-ABSHIRO M, et al. Synthesis, characterization and catalytic application of zeolite based heterogeneous catalyst of iron (Ⅲ), nickel (Ⅱ) and copper (Ⅱ) salen complexes for oxidation of organic pollutants[J]. Journal of Porous Materials, 2015, 22(5):1363-1373. [19] LI W, CUI X, WANG P, et al. Enhanced photosensitized degradation of rhodamine B on CdS/TiO2 nanocomposites under visible light irradiation[J]. Materials Research Bulletin, 2013, 48(9):3025-3031. [20] BANSAL,THANKCHAN V K, PRASAD P P,et al.Catalytic and electrocatalytic wet oxidation of phenol using two new nickel(Ⅱ) tetraazamacrocycle complexes under heterogeneous conditions[J].Journal of Molecular Catalysis A-Chemical,2010,316(1-2):131-138. -

计量
- 文章访问数: 1931
- HTML全文浏览数: 1910
- PDF下载数: 72
- 施引文献: 0