表面活性剂对二氧化钛纳米颗粒和锌离子复合细菌毒性的影响

李梅, 裴建川, 付勇, 郭晓丽. 表面活性剂对二氧化钛纳米颗粒和锌离子复合细菌毒性的影响[J]. 环境化学, 2018, 37(12): 2730-2739. doi: 10.7524/j.issn.0254-6108.2018050902
引用本文: 李梅, 裴建川, 付勇, 郭晓丽. 表面活性剂对二氧化钛纳米颗粒和锌离子复合细菌毒性的影响[J]. 环境化学, 2018, 37(12): 2730-2739. doi: 10.7524/j.issn.0254-6108.2018050902
LI Mei, PEI Jianchuan, FU Yong, GUO Xiaoli. Effect of surfactants on the combined toxicity of TiO2 nanoparticles and zinc ions[J]. Environmental Chemistry, 2018, 37(12): 2730-2739. doi: 10.7524/j.issn.0254-6108.2018050902
Citation: LI Mei, PEI Jianchuan, FU Yong, GUO Xiaoli. Effect of surfactants on the combined toxicity of TiO2 nanoparticles and zinc ions[J]. Environmental Chemistry, 2018, 37(12): 2730-2739. doi: 10.7524/j.issn.0254-6108.2018050902

表面活性剂对二氧化钛纳米颗粒和锌离子复合细菌毒性的影响

  • 基金项目:

    浙江省自然科学基金(LQ14B070007)和国家自然科学基金(21607132)资助.

Effect of surfactants on the combined toxicity of TiO2 nanoparticles and zinc ions

  • Fund Project: Supported by the Natural Science Foundation of Zhejiang Province (LQ14B070007) and National Natural Science Foundation of China (21607132).
  • 摘要: 纳米颗粒和重金属的复合生态毒性已受到广泛关注.作为水体中的常见污染物,表面活性剂可能会影响纳米颗粒和重金属的复合毒性.本文选取常见的阴离子表面活性剂十二烷基苯磺酸钠(SDBS)和非离子表面活性剂Tween 80,以Zn2+为重金属代表,通过细菌毒性实验研究表面活性剂对nano-TiO2和Zn2+对大肠杆菌复合毒性的影响,通过纳米颗粒性质表征、颗粒沉降实验、吸附实验、细菌细胞外膜渗透性测定等揭示毒性影响机制.研究表明,nano-TiO2通过吸附Zn2+降低了Zn2+在介质中的溶解浓度,两者复合毒性小于其叠加毒性;SDBS和Zn2+作用后降低了Zn2+自身的生物可利用性,同时增强了细胞外膜渗透性.当SDBS浓度大于50 mg·L-1,Zn2+浓度大于4 mg·L-1时,两者复合毒性表现为协同效应.3种污染物共存时,nano-TiO2的存在降低了Zn2+和SDBS的复合毒性.Tween 80对nano-TiO2和Zn2+的单独毒性及复合毒性影响均不明显.本研究结果可为表面活性剂存在下纳米颗粒和重金属对细菌或其它生物的复合毒性评价提供理论依据.
  • 加载中
  • [1] CANESI L, CIACCI C, BALBI T. Interactive effects of nanoparticles with other contaminants in aquatic organisms:Friend or foe?[J]. Marine Environmental Research, 2015,111:128-134.
    [2] DENG R, LIN D H, ZHU L Z, et al. Nanoparticle interactions with co-existing contaminants:Joint toxicity, bioaccumulation and risk[J]. Nanotoxicology, 2017, 11(5):591-612.
    [3] ZHANG S, DENG R, LIN D H, et al. Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae[J]. Nanotoxicology, 2017, 11(9-10):1115-1126.
    [4] CLEMENTE Z, CASTRO V L, JONSSON C M, et al. Ecotoxicology of nano-TiO2 -an evaluation of its toxicity to organisms of aquatic ecosystems[J]. International Journal of Environmental Research, 2011, 6(1):33-50.
    [5] YANG W W, LI Y, MIAO A J, et al. Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart[J]. Ecotoxicology & Environmental Safety, 2012, 85(3):44-51.
    [6] CHEN J, QIAN Y, LI H, et al. The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa[J]. Environmental Science & Pollution Research, 2015, 22(16):12407-12414.
    [7] FAN W H, CUI M M, LIU H, et al. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna[J]. Environmental Pollution, 2011, 159(3):729-734.
    [8] FAN W H, CUI M M, SHI Z W, et al. Enhanced oxidative stress and physiological damage in Daphnia magna by copper in the presence of nano-TiO2[J]. Journal of Nanomaterials, 2012, 2012(1):1-7.
    [9] TAN C, FAN W H, WANG W X. Role of titanium dioxide nanoparticles in the elevated uptake and retention of cadmium and zinc in Daphnia magna[J]. Environmental Science & Technology, 2012, 46(1):469-476.
    [10] TAN C, WANG W X. Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles[J]. Environmental Pollution, 2014, 186:36-42.
    [11] YANG W W, WANG Y, HUANG B. TiO2 nanoparticles act as a carrier of Cd bioaccumulation in the ciliate Tetrahymena thermophila[J]. Environmental Science & Technology, 2014, 48(13):7568-7575.
    [12] DELLA TORRE C, BALBI T, GRASSI G, et al. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis[J]. Journal of Hazardous Materials, 2015, 297:92-100.
    [13] ROSENFELDT R R, SEITZ F, ZUBROD J P, et al. Does the presence of titanium dioxide nanoparticles reduce copper toxicity? A factorial approach with the benthic amphipod Gammarus fossarum[J]. Aquatic Toxicology, 2015, 165:154-159.
    [14] FAN W, PENG R, LI X, et al. Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water:Role of organic matter[J]. Water Research, 2016, 105:129-137.
    [15] LI M, ZHU L Z, LIN D H. Toxicity of ZnO nanoparticles to Escherichia coli:Mechanism and the influence of medium components[J]. Environmental Science & Technology, 2011, 45(5):1977-1983.
    [16] LI M, LIN D H, ZHU L Z. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli[J]. Environmental Pollution, 2013, 173:97-102.
    [17] PAGNOUT C, JOMINI S, DADHWAL M, et al. Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli[J]. Colloids & Surfaces B Biointerfaces, 2012, 92(1):315-321.
    [18] INCE N, DIRILGEN N, APIKYAN I, et al. Assessment of toxic interactions of heavy metals in binary mixtures:A statistical approach[J]. Archives of Environmental Contamination and Toxicology, 1999, 36:365-372.
    [19] SRIVASTAVA S, KUMAR A. Comparative cytotoxicity of nanoparticles and ions to Escherichia coli in binary mixtures[J]. Journal of Environmental Sciences, 2017, 55(5):11-19.
    [20] ZHANG D, ZHU L Z, LI F. Influences and mechanisms of surfactants on pyrene biodegradation based on interactions of surfactant with a Klebsiella oxytoca strain[J]. Bioresource Technology, 2013, 142:454-461.
    [21] CALAMARI D, MARCHETTI R. The toxicity of mixtures of metals and surfactants to rainbow trout (Salmo gairdneri rich.)[J]. Water Research, 1973, 7(10):1453-1464.
    [22] TOVELL P W A, NEWSOME C, HOWES D. Effect of water hardness on the toxicity of an anionic detergent to fish[J]. Water Research, 1974, 8(5):291-296.
    [23] Neal A L. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles?[J]. Ecotoxicology, 2008, 17(5):362-371.
    [24] LOOSLI F, STOLL S. Effect of surfactants, pH and water hardness on the surface properties and agglomeration behavior of engineered TiO2 nanoparticles[J]. Environmental Science Nano, 2017, 4(1):203-211.
    [25] OLESZCZUK P, JOSKO I, SKWAREK E. Surfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna[J]. Ecotoxicology, 2015, 24:1923-1932.
  • 加载中
计量
  • 文章访问数:  1395
  • HTML全文浏览数:  1367
  • PDF下载数:  61
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-05-09
  • 刊出日期:  2018-12-15
李梅, 裴建川, 付勇, 郭晓丽. 表面活性剂对二氧化钛纳米颗粒和锌离子复合细菌毒性的影响[J]. 环境化学, 2018, 37(12): 2730-2739. doi: 10.7524/j.issn.0254-6108.2018050902
引用本文: 李梅, 裴建川, 付勇, 郭晓丽. 表面活性剂对二氧化钛纳米颗粒和锌离子复合细菌毒性的影响[J]. 环境化学, 2018, 37(12): 2730-2739. doi: 10.7524/j.issn.0254-6108.2018050902
LI Mei, PEI Jianchuan, FU Yong, GUO Xiaoli. Effect of surfactants on the combined toxicity of TiO2 nanoparticles and zinc ions[J]. Environmental Chemistry, 2018, 37(12): 2730-2739. doi: 10.7524/j.issn.0254-6108.2018050902
Citation: LI Mei, PEI Jianchuan, FU Yong, GUO Xiaoli. Effect of surfactants on the combined toxicity of TiO2 nanoparticles and zinc ions[J]. Environmental Chemistry, 2018, 37(12): 2730-2739. doi: 10.7524/j.issn.0254-6108.2018050902

表面活性剂对二氧化钛纳米颗粒和锌离子复合细菌毒性的影响

  • 1. 浙江农林大学环境与资源学院, 杭州, 311300
基金项目:

浙江省自然科学基金(LQ14B070007)和国家自然科学基金(21607132)资助.

摘要: 纳米颗粒和重金属的复合生态毒性已受到广泛关注.作为水体中的常见污染物,表面活性剂可能会影响纳米颗粒和重金属的复合毒性.本文选取常见的阴离子表面活性剂十二烷基苯磺酸钠(SDBS)和非离子表面活性剂Tween 80,以Zn2+为重金属代表,通过细菌毒性实验研究表面活性剂对nano-TiO2和Zn2+对大肠杆菌复合毒性的影响,通过纳米颗粒性质表征、颗粒沉降实验、吸附实验、细菌细胞外膜渗透性测定等揭示毒性影响机制.研究表明,nano-TiO2通过吸附Zn2+降低了Zn2+在介质中的溶解浓度,两者复合毒性小于其叠加毒性;SDBS和Zn2+作用后降低了Zn2+自身的生物可利用性,同时增强了细胞外膜渗透性.当SDBS浓度大于50 mg·L-1,Zn2+浓度大于4 mg·L-1时,两者复合毒性表现为协同效应.3种污染物共存时,nano-TiO2的存在降低了Zn2+和SDBS的复合毒性.Tween 80对nano-TiO2和Zn2+的单独毒性及复合毒性影响均不明显.本研究结果可为表面活性剂存在下纳米颗粒和重金属对细菌或其它生物的复合毒性评价提供理论依据.

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回